IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i7p1190-d219427.html
   My bibliography  Save this article

The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China

Author

Listed:
  • Rong Guo

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150006, China)

  • Tong Wu

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150006, China)

  • Mengran Liu

    (Key Laboratory of Forest Plan Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China)

  • Mengshi Huang

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150006, China)

  • Luigi Stendardo

    (Department of Civil, Architectural and Environmental Engineering, Padova University, 35131 Padova, Italy)

  • Yutong Zhang

    (Department of Agriculture and Forestry Economic Management, School of Economic Management, Northeast Forestry University, Harbin 150040, China)

Abstract

Urban agglomerations have become a new geographical unit in China, breaking the administrative fortresses between cities, which means that the population and economic activities between cities will become more intensive in the future. Constructing and optimizing the ecological security pattern of urban agglomerations is important for promoting harmonious social-economic development and ecological protection. Using the Harbin-Changchun urban agglomeration as a case study, we have identified ecological sources based on the evaluation of ecosystem functions. Based on the resistance surface modified by nighttime light (NTL) data, the potential ecological corridors were identified using the least-cost path method, and key ecological corridors were extracted using the gravity model. By combining 15 ecological sources, 119 corridors, 3 buffer zones, and 77 ecological nodes, the ecological security pattern (ESP) was constructed. The main land-use types composed of ecological sources and corridors are forest land, cultivated land, grassland, and water areas. Some ecological sources are occupied by construction, while unused land has the potential for ecological development. The ecological corridors in the central region are distributed circularly and extend to southeast side in the form of tree branches with the Songhua River as the central axis. Finally, this study proposes an optimizing pattern with “four belts, four zones, one axis, nine corridors, ten clusters and multi-centers” to provide decision makers with spatial strategies with respect to the conflicts between urban development and ecological protection during rapid urbanization.

Suggested Citation

  • Rong Guo & Tong Wu & Mengran Liu & Mengshi Huang & Luigi Stendardo & Yutong Zhang, 2019. "The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1190-:d:219427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/7/1190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/7/1190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Gong, Jian-zhou & Liu, Yan-sui & Xia, Bei-cheng & Zhao, Guan-wei, 2009. "Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China," Ecological Modelling, Elsevier, vol. 220(24), pages 3612-3620.
    3. Guo, Xudong & Chang, Qing & Liu, Xiao & Bao, Huimin & Zhang, Yuepeng & Tu, Xueying & Zhu, Chunxia & Lv, Chunyan & Zhang, Yanyu, 2018. "Multi-dimensional eco-land classification and management for implementing the ecological redline policy in China," Land Use Policy, Elsevier, vol. 74(C), pages 15-31.
    4. Rushdi, Ali Muhammad Ali & Hassan, Ahmad Kamal, 2015. "Reliability of migration between habitat patches with heterogeneous ecological corridors," Ecological Modelling, Elsevier, vol. 304(C), pages 1-10.
    5. Chen, Yanguang & Huang, Linshan, 2018. "A scaling approach to evaluating the distance exponent of the urban gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 303-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Xu & Dawei Xu & Chen Qu, 2022. "Construction of Ecological Security Pattern and Identification of Ecological Restoration Zones in the City of Changchun, China," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    2. Xiaonan Niu & Huan Ni & Qun Ma & Shangxiao Wang & Leli Zong, 2022. "Identifying Ecological Security Patterns Based on Ecosystem Service Supply and Demand Using Remote Sensing Products (Case Study: The Fujian Delta Urban Agglomeration, China)," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    3. Qiaoyan Lin & Yu Song & Yixin Zhang & Jian Li Hao & Zhijie Wu, 2022. "Strategies for Restoring and Managing Ecological Corridors of Freshwater Ecosystem," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    4. Shuang Song & Dawei Xu & Shanshan Hu & Mengxi Shi, 2021. "Ecological Network Optimization in Urban Central District Based on Complex Network Theory: A Case Study with the Urban Central District of Harbin," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    5. Jun Jiang & Hailin Zhang & Qing Huang & Fei Liu & Long Li & Hongrui Qiu & Shizhe Zhou, 2023. "Diagnosis of Key Ecological Restoration Areas in Territorial Space under the Guidance of Resilience: A Case Study of the Chengdu–Chongqing Region," Land, MDPI, vol. 12(5), pages 1-24, April.
    6. Yimin Li & Juanzhen Zhao & Jing Yuan & Peikun Ji & Xuanlun Deng & Yiming Yang, 2022. "Constructing the Ecological Security Pattern of Nujiang Prefecture Based on the Framework of “Importance–Sensitivity–Connectivity”," IJERPH, MDPI, vol. 19(17), pages 1-21, August.
    7. Xi Chen & Dawei Xu & Safa Fadelelseed & Lianying Li, 2019. "Spatiotemporal Analysis and Control of Landscape Eco-Security at the Urban Fringe in Shrinking Resource Cities: A Case Study in Daqing, China," IJERPH, MDPI, vol. 16(23), pages 1-26, November.
    8. Xinke Wang & Xiangqun Xie & Zhenfeng Wang & Hong Lin & Yan Liu & Huili Xie & Xingzhao Liu, 2022. "Construction and Optimization of an Ecological Security Pattern Based on the MCR Model: A Case Study of the Minjiang River Basin in Eastern China," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    9. Jinzhao Chen & Zhixiong Mei & Bin Wang & Junchao Wei, 2022. "Construction of Ecological Security Patterns Based on Circuit Theory under the Resistance Distance Principle," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
    10. Xiaoyang Liu & Ming Wei & Jian Zeng, 2020. "Simulating Urban Growth Scenarios Based on Ecological Security Pattern: A Case Study in Quanzhou, China," IJERPH, MDPI, vol. 17(19), pages 1-20, October.
    11. Jiqing Lin & Wufa Yang & Kunyong Yu & Jianwei Geng & Jian Liu, 2023. "Construction of Water Corridors for Mitigation of Urban Heat Island Effect," Land, MDPI, vol. 12(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    2. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    3. Jia Xu & Dawei Xu & Chen Qu, 2022. "Construction of Ecological Security Pattern and Identification of Ecological Restoration Zones in the City of Changchun, China," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    4. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    5. Lu, Yanhua & Yan, Lijuan & Li, Jie & Liang, Yunliang & Yang, Chuanjie & Li, Guang & Wu, Jiangqi & Xu, Hua, 2024. "Spatiotemporal evolution of county level ecological security based on an emergy ecological footprint model: The case of Dingxi, China," Ecological Modelling, Elsevier, vol. 490(C).
    6. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.
    7. Zeng, Lang & Chen, Yushu & Liu, Yiwen & Tang, Ming & Liu, Ying & Jin, Zhen & Do, Younghae & Pelinovsky, E. & Kirillin, M. & Macau, E., 2024. "The impact of social interventions on COVID-19 spreading based on multilayer commuter networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    9. Jiang, Bo & Bai, Yang & Wong, Christina P. & Xu, Xibao & Alatalo, Juha M., 2019. "China’s ecological civilization program–Implementing ecological redline policy," Land Use Policy, Elsevier, vol. 81(C), pages 111-114.
    10. Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    11. Liquan Xu & Zhentian Zhang & Gangyi Tan & Junqing Zhou & Yang Wang, 2022. "Analysis on the Evolution and Resilience of Ecological Network Structure in Wuhan Metropolitan Area," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    12. Shuhan Liu & Guoping Lei & Dongyan Wang & Hong Li & Wenbo Li & Jia Gao, 2020. "Reoccupying Ecological Land for Excessively Expanded Rust Belt Cities in Traditional Grain Bases: An Eco-Economic Trade-Off Perspective," Land, MDPI, vol. 9(9), pages 1-16, August.
    13. Lingyan Wei & Meihui Li & Yixi Ma & Yongshi Wang & Genghong Wu & Tiedong Liu & Wenfeng Gong & Mingjiang Mao & Yixian Zhao & Youhao Wei & Shirui Huang & Liya Huang, 2024. "Construction of an Ecological Security Pattern for the National Park of Hainan Tropical Rainforest on the Basis of the Importance of the Function and Sensitivity of Its Ecosystem Services," Land, MDPI, vol. 13(10), pages 1-23, October.
    14. Liang, Xinyuan & Jin, Xiaobin & He, Jie & Wang, Xiaorui & Xu, Cuilan & Qiao, Guoliang & Zhang, Xiaolin & Zhou, Yinkang, 2022. "Impacts of land management practice strategy on regional ecosystems: Enlightenment from ecological redline adjustment in Jiangsu, China," Land Use Policy, Elsevier, vol. 119(C).
    15. Zhe Zhao & Xiangzheng Deng & Fan Zhang & Zhihui Li & Wenjiao Shi & Zhigang Sun & Xuezhen Zhang, 2022. "Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China," Land, MDPI, vol. 11(3), pages 1-13, March.
    16. Siyuan Wang & Minmin Zhao & Weicui Ding & Qiang Yang & Hao Li & Changqing Shao & Binghu Wang & Yi Liu, 2024. "Ecological Suitability Evaluation of City Construction Based on Landscape Ecological Analysis," Sustainability, MDPI, vol. 16(21), pages 1-16, October.
    17. Liu Yang & Mengmeng Suo & Shunqian Gao & Hongzan Jiao, 2022. "Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    18. Le Yin & Erfu Dai & Guopan Xie & Baolei Zhang, 2021. "Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region," Land, MDPI, vol. 10(5), pages 1-13, May.
    19. Zhao-Tian Li & Meng-Meng Hu & Miao Li & Meng-Yu Jiao & Bei-Cheng Xia, 2020. "Identification and countermeasures of limiting factors of regional sustainable development: a case study in the Pearl River Delta of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4209-4224, June.
    20. Ren Yang & Baoqing Qin & Yuancheng Lin, 2021. "Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China," Land, MDPI, vol. 10(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1190-:d:219427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.