IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p320-d1014621.html
   My bibliography  Save this article

Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China

Author

Listed:
  • Zhenzhen Yuan

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Weijie Li

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China)

  • Yong Wang

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Dayun Zhu

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China)

  • Qiuhong Wang

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Yan Liu

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Lingyan Zhou

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

Abstract

Constructing ecological security patterns (ESPs) is an important approach to maintaining regional ecological security and achieving sustainable development. Most previous studies on ESPs mainly focused on the supply of ecosystem services (ESs) yet did not fully consider the ecosystem health and human demand for ESs, which lacked evaluation from the perspective of human nature. Therefore, based on ecosystem health and ESs demand, this paper constructed the “vigor, organization, resilience, ESs supply-demand ratio” (VORSD) ecosystem health evaluation system and combined it with circuit theory to develop a new and comprehensive ESPs identification framework. Taking the Three Gorges Reservoir Area in Chongqing section (TGRAC) as a case study, the results showed that the general ecosystem health of the TGRAC was not optimistic, and there was still a long way to go for ecological treatment and restoration. From the perspective of spatial distribution, there were significant differences in the ecosystem health between regions, and the eastern region was higher than the western region. The ecological sources area of the TGRAC was about 25,350.16 km 2 , mainly distributed in the northeast and southeast of forestland, grassland, and cultivated land. The total length of ecological corridors was 2291.41 km, linking the northeastern, southeastern, middle, and southwestern regions of the TGRAC. There were 82 ecological nodes and 30 ecological barriers, most of which were concentrated on the construction land and cultivated land in the southwest and should be regarded as priority areas for ecological conservation. The research results verify the regional suitability and rationality of integrating the VORSD model and circuit theory to construct ESPs, which can provide an important reference for regional ecological protection and land use pattern optimization.

Suggested Citation

  • Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:320-:d:1014621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Cui, Fengqi & Tang, Haiping & Zhang, Qin & Wang, Bojie & Dai, Luwei, 2019. "Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China," Ecosystem Services, Elsevier, vol. 39(C).
    3. Xiao Ouyang & Zhenbo Wang & Xiang Zhu, 2019. "Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsh," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    2. Rong Guo & Tong Wu & Mengran Liu & Mengshi Huang & Luigi Stendardo & Yutong Zhang, 2019. "The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    3. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
    4. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Yiming Wei & Hongwei Wang & Bo Tan & Mengqi Xue & Yucong Yin, 2022. "Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    6. Haochen Yu & Jiu Huang & Chuning Ji & Zi’ao Li, 2021. "Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China," Land, MDPI, vol. 10(4), pages 1-24, March.
    7. Tao, Yu & Tao, Qin & Sun, Xiao & Qiu, Jiangxiao & Pueppke, Steven G. & Ou, Weixin & Guo, Jie & Qi, Jiaguo, 2022. "Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China," Ecosystem Services, Elsevier, vol. 56(C).
    8. Lingfan Ju & Yan Liu & Jin Yang & Mingshun Xiang & Qing Xiang & Wenkai Hu & Zhengyi Ding, 2023. "Construction of Nature Reserves’ Ecological Security Pattern Based on Landscape Ecological Risk Assessment: A Case Study of Garze Tibetan Autonomous Prefecture, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    9. Yujiang Yan & Jiangui Li & Junli Li & Teng Jiang, 2023. "Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in the Kaidu-Kongque River Basin, China," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    10. Caihong Yang & Huijun Guo & Xiaoyuan Huang & Yanxia Wang & Xiaona Li & Xinyuan Cui, 2022. "Ecological Network Construction of a National Park Based on MSPA and MCR Models: An Example of the Proposed National Parks of “Ailaoshan-Wuliangshan” in China," Land, MDPI, vol. 11(11), pages 1-17, October.
    11. Zhang, Zuo & Li, Jiaming & Luo, Xiang & Li, Chongming & Zhang, Lu, 2020. "Urban lake spatial openness and relationship with neighboring land prices: Exploratory geovisual analytics for essential policy insights," Land Use Policy, Elsevier, vol. 92(C).
    12. Bowen Zhang & Ying Wang & Jiangfeng Li & Liang Zheng, 2022. "Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China," Land, MDPI, vol. 11(6), pages 1-20, June.
    13. Renyi Yang & Wanying Du & Zisheng Yang, 2021. "Spatiotemporal Evolution and Influencing Factors of Urban Land Ecological Security in Yunnan Province," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    14. Qinqin Shi & Hai Chen & Di Liu & Tianwei Geng & Hang Zhang, 2022. "Identifying the Spatial Imbalance in the Supply and Demand of Cultural Ecosystem Services," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    15. Manley, Kyle & Nyelele, Charity & Egoh, Benis N., 2022. "A review of machine learning and big data applications in addressing ecosystem service research gaps," Ecosystem Services, Elsevier, vol. 57(C).
    16. Santiago Madrigal-Martínez & José Luis Miralles i García, 2020. "Assessment Method and Scale of Observation Influence Ecosystem Service Bundles," Land, MDPI, vol. 9(10), pages 1-19, October.
    17. Xiaoxia Su & Jing Wu & Pengshuo Li & Renjie Li & Penggen Cheng, 2022. "RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    18. Das, Manob & Das, Arijit & Saikh, Selim, 2024. "Estimating supply-demand mismatches for optimization of sustainable land use planning in a rapidly growing urban agglomeration (India)," Land Use Policy, Elsevier, vol. 139(C).
    19. Liu Yang & Mengmeng Suo & Shunqian Gao & Hongzan Jiao, 2022. "Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    20. Wenjing Wang & Tong Wu & Yuanzheng Li & Hua Zheng & Zhiyun Ouyang, 2021. "Matching Ecosystem Services Supply and Demand through Land Use Optimization: A Study of the Guangdong-Hong Kong-Macao Megacity," IJERPH, MDPI, vol. 18(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:320-:d:1014621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.