IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i4p547-d205770.html
   My bibliography  Save this article

Not Parking Lots but Parks: A Joint Association of Parks and Transit Stations with Travel Behavior

Author

Listed:
  • Keunhyun Park

    (Department of Landscape Architecture and Environmental Planning, Utah State University, 4005 Old Main Hill, FAV 258, Logan, UT 84322-4005, USA)

  • Dong-Ah Choi

    (College of Architecture + Planning, University of Utah, Salt Lake City, UT 84112, USA)

  • Guang Tian

    (Department of Planning and Urban Studies, University of New Orleans, New Orleans, LA 70148, USA)

  • Reid Ewing

    (College of Architecture + Planning, University of Utah, Salt Lake City, UT 84112, USA)

Abstract

Urban design literature says that public open space in a station area could promote walking and other types of physical activity, enhance place attractiveness, and increase property values. In the context of station areas, however, there is a lack of empirical studies on the relationship between the presence of parks and sustainable travel behavior, which is one of the primary goals of transit-oriented developments (TODs). This study examined the impact of park provision on transit users’ mode choice in three U.S. regions: Atlanta (GA), Boston (MA), and Portland (OR). This study utilized multilevel multinomial logistic regression to account for hierarchical data structures—trips nested within station areas—and multiple travel modes—automobiles, transit, and walking. After controlling for the built environment and trip attributes, this study showed that when there was a park, people were more likely to walk or take transit to access or egress a transit station. A transit station having a park nearby may provide a more pleasant first-mile/last-mile travel experience. This paper demonstrated that station areas need to incorporate more public space, an overlooked element in current TOD plans.

Suggested Citation

  • Keunhyun Park & Dong-Ah Choi & Guang Tian & Reid Ewing, 2019. "Not Parking Lots but Parks: A Joint Association of Parks and Transit Stations with Travel Behavior," IJERPH, MDPI, vol. 16(4), pages 1-9, February.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:4:p:547-:d:205770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/4/547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/4/547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Khan, Mobashwir & M. Kockelman, Kara & Xiong, Xiaoxia, 2014. "Models for anticipating non-motorized travel choices, and the role of the built environment," Transport Policy, Elsevier, vol. 35(C), pages 117-126.
    3. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Representing pedestrian activity in travel demand models: Framework and application," Journal of Transport Geography, Elsevier, vol. 52(C), pages 111-122.
    4. Keunhyun Park, 2017. "Psychological park accessibility: a systematic literature review of perceptual components affecting park use," Landscape Research, Taylor & Francis Journals, vol. 42(5), pages 508-520, July.
    5. Boarnet, Marlon G. & Giuliano, Genevieve & Hou, Yuting & Shin, Eun Jin, 2017. "First/last mile transit access as an equity planning issue," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 296-310.
    6. Reid Ewing & Guang Tian & JP Goates & Ming Zhang & Michael J Greenwald & Alex Joyce & John Kircher & William Greene, 2015. "Varying influences of the built environment on household travel in 15 diverse regions of the United States," Urban Studies, Urban Studies Journal Limited, vol. 52(13), pages 2330-2348, October.
    7. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    8. Cao, Xinyu (Jason) & Xu, Zhiyi & Fan, Yingling, 2010. "Exploring the connections among residential location, self-selection, and driving: Propensity score matching with multiple treatments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 797-805, December.
    9. Jacobson, Justin & Forsyth, Ann, 2008. "Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(2), pages 51-88.
    10. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Guo & Linchuan Yang & Wenke Huang & Yi Guo, 2020. "Traffic Safety Perception, Attitude, and Feeder Mode Choice of Metro Commute: Evidence from Shenzhen," IJERPH, MDPI, vol. 17(24), pages 1-20, December.
    2. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Boukarta Soufiane & Berezowska-Azzag Ewa, 2022. "The Influence of Built Environment and Socio-Economic Factors on Commuting Energy Demand: A Path Analysis-Based Approach," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 19-39, December.
    3. Ao, Yibin & Yang, Dujuan & Chen, Chuan & Wang, Yan, 2019. "Exploring the effects of the rural built environment on household car ownership after controlling for preference and attitude: Evidence from Sichuan, China," Journal of Transport Geography, Elsevier, vol. 74(C), pages 24-36.
    4. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    5. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    6. Yibin Ao & Chuan Chen & Dujuan Yang & Yan Wang, 2018. "Relationship between Rural Built Environment and Household Vehicle Ownership: An Empirical Analysis in Rural Sichuan, China," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    7. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    8. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    9. Boukarta Soufiane & Berezowska-Azzag Ewa, 2020. "Exploring the Role of Socio-Economic and Built Environment Driving Factors in Shaping the Commuting Modal Share: A Path-Analysis-Based Approach," Quaestiones Geographicae, Sciendo, vol. 39(4), pages 87-107, December.
    10. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    11. Arefeh Nasri & Lei Zhang, 2019. "How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of the Washington, D.C. Metropolitan Area," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    12. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    13. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Shi, Kunbo & De Vos, Jonas & Yang, Yongchun & Li, Enlong & Witlox, Frank, 2020. "Does e-shopping for intangible services attenuate the effect of spatial attributes on travel distance and duration?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 86-97.
    15. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    16. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    17. Zhu, Pengyu & Tan, Xinying & Zhao, Songnian & Shi, Shuai & Wang, Mingshu, 2022. "Land use regulations, transit investment, and commuting preferences," Land Use Policy, Elsevier, vol. 122(C).
    18. Tae-Hyoung Tommy Gim, 2023. "Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship," Transportation, Springer, vol. 50(4), pages 1347-1398, August.
    19. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    20. Berjisian, Elmira & Habibian, Meeghat, 2019. "Developing a pedestrian destination choice model using the stratified importance sampling method," Journal of Transport Geography, Elsevier, vol. 77(C), pages 39-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:4:p:547-:d:205770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.