IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i21p4124-d280498.html
   My bibliography  Save this article

Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis

Author

Listed:
  • Zuo Zhang

    (Collage of Public Administration, Central China Normal University, Wuhan 430079, China)

  • Min Zhou

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Guoliang Ou

    (School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China)

  • Shukui Tan

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yan Song

    (The Department of City and Regional Planning, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA)

  • Lu Zhang

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xin Nie

    (School of Public Administration, Guangxi University, Nanning 530004, China)

Abstract

People explosion and fast economic growth are bringing a more serious land resource shortage crisis. Rational land-use allocation can effectively reduce this burden. Existing land-use allocation models may deal with a lot of challenges of land-use planning. This study proposed a hybrid quantitative and spatial optimization land-use allocation model that could enrich the land-use allocation method system. This model has three advantages compared to former methods: (1) this model can simultaneously solve the quantitative land area optimization problem and spatial allocation problem, which are the two core aspects of land-use allocation; (2) the land suitability assessment method considers various geographical, economic and environmental factors which are essential to land-use allocation; (3) this model used an interval stochastic fuzzy programming land-use allocation model to solve the quantitative land area optimization problem. This model not only considers three uncertainties in the natural system but also involves various economic, social, ecological and environmental constraints—most of which are specifically put into the optimization process. The proposed model has been applied to a real case study in Liannan county, Guangdong province, China. The results could help land managers and decision makers to conduct sound land-use planning/policy and could help scientists understand the inner contradiction among economic development, environmental protection, and land use.

Suggested Citation

  • Zuo Zhang & Min Zhou & Guoliang Ou & Shukui Tan & Yan Song & Lu Zhang & Xin Nie, 2019. "Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis," IJERPH, MDPI, vol. 16(21), pages 1-23, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4124-:d:280498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/21/4124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/21/4124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Honghui & Zeng, Yongnian & Jin, Xiaobin & Shu, Bangrong & Zhou, Yinkang & Yang, Xuhong, 2016. "Simulating multi-objective land use optimization allocation using Multi-agent system—A case study in Changsha, China," Ecological Modelling, Elsevier, vol. 320(C), pages 334-347.
    2. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    3. Peter Verburg & Bas Eickhout & Hans Meijl, 2008. "A multi-scale, multi-model approach for analyzing the future dynamics of European land use," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 57-77, March.
    4. Claudia Parra Paitan & Peter H. Verburg, 2019. "Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Liu, Xiaoping & Ou, Jinpei & Li, Xia & Ai, Bin, 2013. "Combining system dynamics and hybrid particle swarm optimization for land use allocation," Ecological Modelling, Elsevier, vol. 257(C), pages 11-24.
    6. Min Zhou & Shukui Tan & Lizao Tao & Xiangbo Zhu & Ghulam Akhmat, 2015. "An interval fuzzy land-use allocation model (IFLAM) for Beijing in association with environmental and ecological consideration under uncertainty," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2269-2290, November.
    7. Robert G. Cromley & Dean M. Hanink, 1999. "Coupling land use allocation models with raster GIS," Journal of Geographical Systems, Springer, vol. 1(2), pages 137-153, July.
    8. Wang, Szu-Hua & Huang, Shu-Li & Budd, William W., 2012. "Integrated ecosystem model for simulating land use allocation," Ecological Modelling, Elsevier, vol. 227(C), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaobo Liu & Yukuan Wang & Ming Li, 2021. "How to Identify Future Priority Areas for Urban Development: An Approach of Urban Construction Land Suitability in Ecological Sensitive Areas," IJERPH, MDPI, vol. 18(8), pages 1-21, April.
    2. Bin Yang & Zhanqi Wang & Xiaowei Yao & Ji Chai, 2020. "Assessing the Performance of Land Consolidation Projects in Different Modes: A Case Study in Jianghan Plain of Hubei Province, China," IJERPH, MDPI, vol. 17(4), pages 1-16, February.
    3. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    4. Bingkui Qiu & Yan Tu & Guoliang Ou & Min Zhou & Yifan Zhu & Shuhan Liu & Haoyang Ma, 2023. "Optimal Modeling of Sustainable Land Use Planning under Uncertain at a Watershed Level: Interval Stochastic Fuzzy Linear Programming with Chance Constraints," Land, MDPI, vol. 12(5), pages 1-21, May.
    5. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Lu & Min Zhou & Guoliang Ou & Zuo Zhang & Li He & Yuxiang Ma & Chaonan Ma & Jiating Tu & Siqi Li, 2021. "Sustainable Land-Use Allocation Model at a Watershed Level under Uncertainty," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    2. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    3. Sajith, Gouri & Srinivas, Rallapalli & Golberg, Alexander & Magner, Joe, 2022. "Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Guadalupe Azuara García & Efrén Palacios Rosas & Alfonso García-Ferrer & Pilar Montesinos Barrios, 2017. "Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    5. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    6. Shukui Tan & Lu Zhang & Min Zhou & Yanan Li & Siliang Wang & Bing Kuang & Xiang Luo, 2017. "A hybrid mathematical model for urban land-use planning in association with environmental–ecological consideration under uncertainty," Environment and Planning B, , vol. 44(1), pages 54-79, January.
    7. Xuesong Feng & Zhibin Tao & Xuejun Niu & Zejing Ruan, 2021. "Multi-Objective Land Use Allocation Optimization in View of Overlapped Influences of Rail Transit Stations," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    8. Jing Yao & Xiaoxiang Zhang & Alan T. Murray, 2018. "Spatial Optimization for Land-use Allocation," International Regional Science Review, , vol. 41(6), pages 579-600, November.
    9. Jean-Sauveur Ay & Raja Chakir & Luc Doyen & Frédéric Jiguet & Paul Leadley, 2014. "Integrated models, scenarios and dynamics of climate, land use and common birds," Climatic Change, Springer, vol. 126(1), pages 13-30, September.
    10. Min Zhou & Shukui Tan & Lizao Tao & Xiangbo Zhu & Ghulam Akhmat, 2015. "An interval fuzzy land-use allocation model (IFLAM) for Beijing in association with environmental and ecological consideration under uncertainty," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2269-2290, November.
    11. Yuping Bai & Zhe Zhao & Chuyao Weng & Wenxuan Wang & Yecui Hu, 2021. "Scenario-Based Analysis of Land Use Competition and Sustainable Land Development in Zhangye of the Heihe River Basin, China," IJERPH, MDPI, vol. 18(19), pages 1-20, October.
    12. Dinghua Ou & Xingzhu Yao & Jianguo Xia & Xuesong Gao & Changquan Wang & Wanlu Chen & Qiquan Li & Zongda Hu & Juan Yang, 2019. "Development of a Composite Model for Simulating Landscape Pattern Optimization Allocation: A Case Study in the Longquanyi District of Chengdu City, Sichuan Province, China," Sustainability, MDPI, vol. 11(9), pages 1-35, May.
    13. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 173-200, December.
    14. Changgang Ma & Min Zhou, 2018. "A GIS-Based Interval Fuzzy Linear Programming for Optimal Land Resource Allocation at a City Scale," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 143-166, January.
    15. Ashenafi Mehari & Paolo Vincenzo Genovese, 2023. "A Land Use Planning Literature Review: Literature Path, Planning Contexts, Optimization Methods, and Bibliometric Methods," Land, MDPI, vol. 12(11), pages 1-41, October.
    16. Parvez, Md Rezwanul & Ripplinger, David & Maduraperuma, Buddhika, 2015. "Modeling Land Use Pattern Change Analysis in the Northern Great Plains: A Novel Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205868, Agricultural and Applied Economics Association.
    17. Kheir, Nasr & Portnov, Boris A., 2024. "Land market segmentation along ethnic lines: Four urban localities in Israel as a case study," Land Use Policy, Elsevier, vol. 136(C).
    18. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    19. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    20. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4124-:d:280498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.