IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p3960-d277607.html
   My bibliography  Save this article

The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China

Author

Listed:
  • Zheming Liu

    (School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150006, China)

  • Yumeng Jin

    (School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150006, China)

  • Hong Jin

    (School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150006, China)

Abstract

In the context of global climate change and accelerated urbanization, the deterioration of the urban living environment has had a serious negative impact on the life of residents. However, studies on the effects of forms and configurations of outdoor spaces in residential areas on the outdoor thermal environment based on the particularity of climate in severe cold regions are very limited. Through field measurements of the thermal environment at the pedestrian level in the outdoor space of residential areas in three seasons (summer, the transition season and winter) in Harbin, China, this study explored the effects of forms and configurations of three typical outdoor spaces (the linear block, the enclosed block, and the square) on the thermal environment and thermal comfort using the Physiologically Equivalent Temperature (PET). The results show that the thermal environment of all outdoor space forms was relatively comfortable in the transition season but was uncomfortable in summer and winter. The full-enclosed block with a lower sky view factor (SVF) had a higher thermal comfort condition in summer and winter. The linear block with higher buildings and wider south–north spacing had a higher thermal comfort condition in summer and winter. When the buildings on the south side were lower and the south–north spacing was wider, the thermal environment of the square was more comfortable in winter.

Suggested Citation

  • Zheming Liu & Yumeng Jin & Hong Jin, 2019. "The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3960-:d:277607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/3960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/3960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krüger, E. & Pearlmutter, D. & Rasia, F., 2010. "Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment," Applied Energy, Elsevier, vol. 87(6), pages 2068-2078, June.
    2. Yujie Lin & Yumeng Jin & Hong Jin, 2019. "Field Study on the Microclimate of Public Spaces in Traditional Residential Areas in a Severe Cold Region of China," IJERPH, MDPI, vol. 16(16), pages 1-16, August.
    3. Yezioro, A. & Capeluto, Isaac G. & Shaviv, E., 2006. "Design guidelines for appropriate insolation of urban squares," Renewable Energy, Elsevier, vol. 31(7), pages 1011-1023.
    4. Hong Jin & Jing Zhao & Siqi Liu & Jian Kang, 2018. "Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    5. Smith, Claire & Levermore, Geoff, 2008. "Designing urban spaces and buildings to improve sustainability and quality of life in a warmer world," Energy Policy, Elsevier, vol. 36(12), pages 4558-4562, December.
    6. Hong Jin & Zheming Liu & Yumeng Jin & Jian Kang & Jing Liu, 2017. "The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    2. Yingtao Qi & Xiaodi Li & Yupeng Wang & Dian Zhou, 2023. "Research on Indoor Thermal Environment Analysis and Optimization Strategy of Rural Dwellings around Xi’an Based on PET Evaluation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Futcher, Julie Ann & Mills, Gerald, 2013. "The role of urban form as an energy management parameter," Energy Policy, Elsevier, vol. 53(C), pages 218-228.
    2. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    3. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    4. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    5. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    6. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    7. Nurul Amirah ISA & Siti Aekbal SALLEH & Wan Mohd Naim WAN MOHD & Andy CHAN, 2018. "Kuala Lumpur City Of Tomorrow: Integration Of Geospatial Urban Climatic Information In City Planning," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(4), pages 5-27, November.
    8. Pingying Lin & Zhonghua Gou & Stephen Siu-Yu Lau & Hao Qin, 2017. "The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    9. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    10. Jonathan Chambers, 2020. "Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018," Climatic Change, Springer, vol. 163(1), pages 539-558, November.
    11. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    12. Dimitra V Chondrogianni & Yorgos J Stephanedes, 2022. "Evaluation of urban planning methods toward bioclimatic and resilient urban spaces," Environment and Planning B, , vol. 49(5), pages 1354-1370, June.
    13. Bilal Manzoor & Idris Othman & Juan Carlos Pomares, 2021. "Digital Technologies in the Architecture, Engineering and Construction (AEC) Industry—A Bibliometric—Qualitative Literature Review of Research Activities," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    14. Min Ho Shin & Hwan Yong Kim & Donghwan Gu & Hyoungsub Kim, 2017. "LEED, Its Efficacy and Fallacy in a Regional Context—An Urban Heat Island Case in California," Sustainability, MDPI, vol. 9(9), pages 1-11, September.
    15. Jose-Manuel Almodovar-Melendo & Joseph-Maria Cabeza-Lainez, 2018. "Environmental Features of Chinese Architectural Heritage: The Standardization of Form in the Pursuit of Equilibrium with Nature," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    16. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    17. Hong Jin & Jing Zhao & Siqi Liu & Jian Kang, 2018. "Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    18. Tao Yu & Qi Tang & Yongxiang Wu & Yaowu Wang & Zezhou Wu, 2019. "What Determines the Success of Culture-Led Regeneration Projects in China?," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    19. Igor Gallay & Branislav Olah & Veronika Murtinová & Zuzana Gallayová, 2023. "Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    20. Stefania Bonafoni & Giorgio Baldinelli & Paolo Verducci & Andrea Presciutti, 2017. "Remote Sensing Techniques for Urban Heating Analysis: A Case Study of Sustainable Construction at District Level," Sustainability, MDPI, vol. 9(8), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3960-:d:277607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.