IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i17p3100-d261092.html
   My bibliography  Save this article

Spatio-Temporal Analysis of Drought Variability Using CWSI in the Koshi River Basin (KRB)

Author

Listed:
  • Han Wu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Donghong Xiong

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Sino-Nepal Joint Research Centre for Geography, IMHE-TU-YNU, Kathmandu 44600, Nepal
    Branch of Mountain Sciences, Kathmandu Center for Research and Education, CAS-TU, Kathmandu 44600, Nepal)

  • Bintao Liu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Sino-Nepal Joint Research Centre for Geography, IMHE-TU-YNU, Kathmandu 44600, Nepal
    Branch of Mountain Sciences, Kathmandu Center for Research and Education, CAS-TU, Kathmandu 44600, Nepal)

  • Su Zhang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yong Yuan

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yiping Fang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

  • Chhabi Lal Chidi

    (Sino-Nepal Joint Research Centre for Geography, IMHE-TU-YNU, Kathmandu 44600, Nepal
    Branch of Mountain Sciences, Kathmandu Center for Research and Education, CAS-TU, Kathmandu 44600, Nepal
    Central Department of Geography, Tribhuvan University, Kathmandu 44600, Nepal)

  • Nirmal Mani Dahal

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Drought is one of the most frequent meteorological disasters, and has exerted significant impacts on the livelihoods and economy of the Koshi River Basin (KRB). In this study, we assessed drought patterns using the Crop Water Shortage Index (CWSI) based on the MOD16 product for the period between 2000 and 2014. The results revealed that the CWSI based on the MOD16 product can be act as an indicator to monitor the characteristics of the drought. Significant spatial heterogeneity of drought was observed in the basin, with higher CWSI values downstream and upstream than in the midstream. The midstream of the KRB was dominated by light drought, moderate drought occurred in the upstream, and the downstream was characterized by severe drought. The monthly CWSI during one year in KRB showed the higher CWSI between March to May (pre-monsoon) and October to December (post-monsoon) rather than June to September (monsoon), and the highest was observed in the month of April, suggesting that precipitation plays the most important role in the mitigation of CWSI. Additionally, the downstream and midstream showed a higher variation of drought compared to the upstream in the basin. This research indicates that the downstream suffered severe drought due to seasonal water shortages, especially during the pre-monsoon, and water-related infrastructure should be implemented to mitigate losses caused by drought.

Suggested Citation

  • Han Wu & Donghong Xiong & Bintao Liu & Su Zhang & Yong Yuan & Yiping Fang & Chhabi Lal Chidi & Nirmal Mani Dahal, 2019. "Spatio-Temporal Analysis of Drought Variability Using CWSI in the Koshi River Basin (KRB)," IJERPH, MDPI, vol. 16(17), pages 1-11, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3100-:d:261092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/17/3100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/17/3100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abid Hussain & Golam Rasul & Bidhubhusan Mahapatra & Sabarnee Tuladhar, 2016. "Household food security in the face of climate change in the Hindu-Kush Himalayan region," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(5), pages 921-937, October.
    2. Bartlett, R. & Bharati, Luna & Pant, Dhruba & Hosterman, H. & McCornick, P. G., 2010. "Climate change impacts and adaptation in Nepal," IWMI Working Papers H043439, International Water Management Institute.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    4. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basanta Paudel & Zhaofeng Wang & Yili Zhang & Mohan Kumar Rai & Pranesh Kumar Paul, 2021. "Climate Change and Its Impacts on Farmer’s Livelihood in Different Physiographic Regions of the Trans-Boundary Koshi River Basin, Central Himalayas," IJERPH, MDPI, vol. 18(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    2. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    3. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    4. Huang, Ya-Hui & Ma, Yan, 2024. "Climate change and divorce behavior: Implication for family education," Innovation and Green Development, Elsevier, vol. 3(1).
    5. Abid Hussain & Golam Rasul & Bidhubhusan Mahapatra & Shahriar Wahid & Sabarnee Tuladhar, 2018. "Climate change-induced hazards and local adaptations in agriculture: a study from Koshi River Basin, Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1365-1383, April.
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    8. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    9. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    10. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    11. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    12. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    13. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    14. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    15. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    16. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke S. & Sarker, Tapan, 2017. "A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal," Economic Modelling, Elsevier, vol. 62(C), pages 43-50.
    17. Jiangjun Wan & Xueqian Song & Yi Su & Li Peng & Shanta Paudel Khatiwada & Yawen Zhou & Wei Deng, 2019. "Water Resource Utilization and Livelihood Adaptations under the Background of Climate Change: A Case Study of Rural Households in the Koshi River Basin," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    18. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3100-:d:261092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.