IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i14p2499-d248077.html
   My bibliography  Save this article

Identification of MVOCs Produced by Coniophora puteana and Poria placenta Growing on WPC Boards by Using Subtraction Mass Spectra

Author

Listed:
  • Mateusz Kozicki

    (Department of Thermal Physics, Acoustic and Environment, Building Research Institute, 00-611 Warsaw, Poland)

  • Anna Wiejak

    (Department of Construction Materials Engineering, Building Research Institute, 00-611 Warsaw, Poland)

  • Michał Piasecki

    (Department of Thermal Physics, Acoustic and Environment, Building Research Institute, 00-611 Warsaw, Poland)

  • Alicja Abram

    (Department of Thermal Physics, Acoustic and Environment, Building Research Institute, 00-611 Warsaw, Poland
    Department of Construction Materials Engineering, Building Research Institute, 00-611 Warsaw, Poland)

Abstract

Volatile fungal metabolites are responsible for various odors and may contribute to a “sick building syndrome” (SBS) with a negative effect on the heath of building. The authors have attempted to fill the research gaps by analyzing microbial volatile organic compounds (MVOCs) originating from representatives of the Basidiomycetes class that grow on wood-polymer composite (WPC) boards. WPCs have been analyzed as a material exposed to biodeterioration. Indoor air quality (IAQ) is affected by the increased use of WPCs inside buildings, and is becoming a highly relevant research issue. The emission profiles of MVOCs at various stages of WPC decay have been demonstrated in detail for Coniophora puteana and Poria placenta , and used to set the European industrial standards for wood-decay fungi. Differences in the production of MVOCs among these species of fungi have been detected using the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method. This study identifies the production of alcohols, aldehydes, ketones, carboxylic acids and other compounds during one month of fungal growth. The identified level of metabolites indicates a relation between the level of air pollution and condition of the WPC material, which may become part of IAQ quantification in the future. The study points to the species-specific compounds for representatives of brown and white-rot fungi and the compounds responsible for their odor. In this study, 1-Octen-3-ol was indicated as a marker for their active growth, which is also associated with SBS. The proposed experimental set-up and data analysis are a simple and convenient way to obtain emission profiles of MVOCs from microbes growing on different materials.

Suggested Citation

  • Mateusz Kozicki & Anna Wiejak & Michał Piasecki & Alicja Abram, 2019. "Identification of MVOCs Produced by Coniophora puteana and Poria placenta Growing on WPC Boards by Using Subtraction Mass Spectra," IJERPH, MDPI, vol. 16(14), pages 1-13, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2499-:d:248077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/14/2499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/14/2499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mateusz Kozicki & Michał Piasecki & Anna Goljan & Halina Deptuła & Adam Niesłochowski, 2018. "Emission of Volatile Organic Compounds (VOCs) from Dispersion and Cementitious Waterproofing Products," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    2. Michał Piasecki & Mateusz Kozicki & Szymon Firląg & Anna Goljan & Krystyna Kostyrko, 2018. "The Approach of Including TVOCs Concentration in the Indoor Environmental Quality Model (IEQ)—Case Studies of BREEAM Certified Office Buildings," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jolanda Palmisani & Alessia Di Gilio & Ezia Cisternino & Maria Tutino & Gianluigi de Gennaro, 2020. "Volatile Organic Compound (VOC) Emissions from a Personal Care Polymer-Based Item: Simulation of the Inhalation Exposure Scenario Indoors under Actual Conditions of Use," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    2. Rafael Piñeiro & Eva Jimenez-Relinque & Roman Nevshupa & Marta Castellote, 2021. "Primary and Secondary Emissions of VOCs and PAHs in Indoor Air from a Waterproof Coal-Tar Membrane: Diagnosis and Remediation," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    3. Edmundas Kazimieras Zavadskas & Jonas Šaparauskas & Jurgita Antucheviciene, 2018. "Sustainability in Construction Engineering," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    4. Michał Piasecki & Krystyna Kostyrko & Małgorzata Fedorczak-Cisak & Katarzyna Nowak, 2020. "Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation," Energies, MDPI, vol. 13(6), pages 1-21, March.
    5. Anna Devitofrancesco & Lorenzo Belussi & Italo Meroni & Fabio Scamoni, 2019. "Development of an Indoor Environmental Quality Assessment Tool for the Rating of Offices in Real Working Conditions," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    6. Chuloh Jung & Nahla Al Qassimi, 2022. "Investigating the Emission of Hazardous Chemical Substances from Mashrabiya Used for Indoor Air Quality in Hot Desert Climate," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    7. Michał Piasecki & Elżbieta Radziszewska-Zielina & Piotr Czerski & Małgorzata Fedorczak-Cisak & Michał Zielina & Paweł Krzyściak & Patrycja Kwaśniewska-Sip & Wojciech Grześkowiak, 2020. "Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building," Energies, MDPI, vol. 13(22), pages 1-27, November.
    8. Lihua Liang & Baohua Wen & Feng Xu & Jianwei Yan & Xiangqi Yan & S. Ramesh, 2021. "Linking the Development of Building Sustainability Assessment Tools with the Concept Evolution of Sustainable Buildings," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    9. Yao-Tang Hsu & Wen-Hsin Wang & Wei-Hsi Hung, 2020. "Evaluating the Properties of a Coating Material with Polycaprolactone-Degradable Fluorinated Silicon-Containing Waterborne Polyurethane," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    10. Michał Piasecki & Krystyna Kostyrko, 2020. "Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method," Energies, MDPI, vol. 13(12), pages 1-35, June.
    11. Michał Piasecki & Mateusz Kozicki & Szymon Firląg & Anna Goljan & Krystyna Kostyrko, 2018. "The Approach of Including TVOCs Concentration in the Indoor Environmental Quality Model (IEQ)—Case Studies of BREEAM Certified Office Buildings," Sustainability, MDPI, vol. 10(11), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2499-:d:248077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.