IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i10p1786-d232838.html
   My bibliography  Save this article

Understanding Where We Are Well: Neighborhood-Level Social and Environmental Correlates of Well-Being in the Stanford Well for Life Study

Author

Listed:
  • Benjamin W. Chrisinger

    (Department of Social Policy and Intervention, University of Oxford, Oxford OX1 2ER, UK)

  • Julia A. Gustafson

    (Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine; Stanford, CA 94305, USA)

  • Abby C. King

    (Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine; Stanford, CA 94305, USA
    Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA)

  • Sandra J. Winter

    (Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine; Stanford, CA 94305, USA)

Abstract

Individual well-being is a complex concept that varies among and between individuals and is impacted by individual, interpersonal, community, organizational, policy and environmental factors. This research explored associations between select environmental characteristics measured at the ZIP code level and individual well-being. Participants ( n = 3288, mean age = 41.4 years, 71.0% female, 57.9% white) were drawn from a registry of individuals who completed the Stanford WELL for Life Scale (SWLS), a 76-question online survey that asks about 10 domains of well-being: social connectedness, lifestyle and daily practices, physical health, stress and resilience, emotional and mental health, purpose and meaning, sense of self, financial security and satisfaction, spirituality and religiosity, and exploration and creativity. Based on a nationally-representative 2018 study of associations between an independent well-being measure and county-level characteristics, we selected twelve identical or analogous neighborhood (ZIP-code level) indicators to test against the SWLS measure and its ten constituent domains. Data were collected from secondary sources to describe socio-economic (median household income, percent unemployment, percent child poverty), demographic (race/ethnicity), and physical environment (commute by bicycle and public transit), and healthcare (number of healthcare facilities, percent mammogram screenings, percent preventable hospital stays). All continuous neighborhood factors were re-classified into quantile groups. Linear mixed models were fit to assess relationships between each neighborhood measure and each of the ten domains of well-being, as well as the overall SWLS well-being measure, and were adjusted for spatial autocorrelation and individual-level covariates. In models exploring associations between the overall SWLS score and neighborhood characteristics, six of the twelve neighborhood factors exhibited significant differences between quantile groups ( p < 0.05). All of the ten SWLS domains had at least one instance of significant ( p < 0.05) variation across quantile groups for a neighborhood factor; stress and resilience, emotional and mental health, and financial security had the greatest number of significant associations (6/12 factors), followed by physical health (5/12 factors) and social connectedness (4/12 factors). All but one of the neighborhood factors (number of Federally Qualified Health Centers) showed at least one significant association with a well-being domain. Among the neighborhood factors with the most associations with well-being domains were rate of preventable hospital stays (7/10 domains), percent holding bachelor’s degrees (6/10 domains), and median income and percent with less than high school completion (5/10 domains). These observational insights suggest that neighborhood factors are associated with individuals’ overall self-rated well-being, though variation exists among its constituent domains. Further research that employs such multi-dimensional measures of well-being is needed to determine targets for intervention at the neighborhood level that may improve well-being at both the individual and, ultimately, neighborhood levels.

Suggested Citation

  • Benjamin W. Chrisinger & Julia A. Gustafson & Abby C. King & Sandra J. Winter, 2019. "Understanding Where We Are Well: Neighborhood-Level Social and Environmental Correlates of Well-Being in the Stanford Well for Life Study," IJERPH, MDPI, vol. 16(10), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1786-:d:232838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/10/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/10/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Lawless & Richard Lucas, 2011. "Predictors of Regional Well-Being: A County Level Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 101(3), pages 341-357, May.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Roger S. Bivand & David W. S. Wong, 2018. "Comparing implementations of global and local indicators of spatial association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 716-748, September.
    4. Brita Roy & Carley Riley & Jeph Herrin & Erica S Spatz & Anita Arora & Kenneth P Kell & John Welsh & Elizabeth Y Rula & Harlan M Krumholz, 2018. "Identifying county characteristics associated with resident well-being: A population based study," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tia Rich & Benjamin W. Chrisinger & Rajani Kaimal & Sandra J. Winter & Haley Hedlin & Yan Min & Xueyin Zhao & Shankuan Zhu & San-Lin You & Chien-An Sun & Jaw-Town Lin & Ann W. Hsing & Catherine Heaney, 2022. "Contemplative Practices Behavior Is Positively Associated with Well-Being in Three Global Multi-Regional Stanford WELL for Life Cohorts," IJERPH, MDPI, vol. 19(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Teruaki Kido & Yuko Yotsumoto & Masamichi J. Hayashi, 2025. "Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    4. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    5. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    8. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    11. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    14. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    15. Evans O. Mudibo & Jasper Bogaert & Caroline Tigoi & Moses M. Ngari & Benson O. Singa & Christina L. Lancioni & Abdoulaye Hama Diallo & Emmie Mbale & Ezekiel Mupere & John Mukisa & Johnstone Thitiri & , 2024. "Systemic biological mechanisms underpin poor post-discharge growth among severely wasted children with HIV," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Lin-Lin Wang & Zachary Y. Huang & Wen-Fei Dai & Yong-Ping Yang & Yuan-Wen Duan, 2024. "Mixed effects of honey bees on pollination function in the Tibetan alpine grasslands," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Tomas Hanell, 2022. "Unmet Aspirations and Urban Malaise," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(1), pages 83-103, November.
    18. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
    19. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    20. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    21. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1786-:d:232838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.