IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2018i1p5-d191994.html
   My bibliography  Save this article

Flood Risk Evaluation in Urban Spaces: The Study Case of Tormes River (Salamanca, Spain)

Author

Listed:
  • Marco Criado

    (Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain)

  • Antonio Martínez-Graña

    (Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain)

  • Javier Sánchez San Román

    (Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain)

  • Fernando Santos-Francés

    (Department of Soil Sciences, Faculty of Environmental Sciences, Avenue Filiberto Villalobos, 119, University of Salamanca, 37007 Salamanca, Spain)

Abstract

The expansion of cities towards flood zones, and the increasingly frequent episodes of torrential rains arising from global warming, mean that the population is becoming more exposed to floods. Due to this, a correct assessment of flood events is of great help in the development of preventive actions, planning and resource management, or interventions. For this reason, in this work we aim to establish guidelines to assess the hazard, exposure, and vulnerability of the population and its properties to flood events, using Hec-Ras for the simulation of the flood and ArcGis and GeoHecRas to treat geographic information and prepare the cartography. The study was focused on the Tormes River in Salamanca (Spain). We studied three return periods with different probabilities of occurrence and intensity, corresponding to 5, 100, and 500 years. The flow corresponding to each episode was calculated, along with the extension, speed, and depth that would be achieved in each case. Then, the probability of occurrence was delimited, as well as the magnitude, allowing us to obtain different hazard maps. In addition, the areas of greatest hazard to people and property were established for each event. Regarding the exposure, the areas and land use, infrastructure, and buildings that would be flooded in each case were identified, quantifying the extension or length of the affected properties at the different levels of hazard in each case. Additionally, the vulnerability of the different buildings and exposed infrastructure was studied. Finally, the flood risk was estimated by combining these three components.

Suggested Citation

  • Marco Criado & Antonio Martínez-Graña & Javier Sánchez San Román & Fernando Santos-Francés, 2018. "Flood Risk Evaluation in Urban Spaces: The Study Case of Tormes River (Salamanca, Spain)," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2018:i:1:p:5-:d:191994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    2. Fernando Santos-Francés & Antonio Martínez-Graña & Carmelo Ávila Zarza & Antonio García Sánchez & Pilar Alonso Rojo, 2017. "Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods," IJERPH, MDPI, vol. 14(6), pages 1-20, May.
    3. Julien Ernst & Benjamin Dewals & Sylvain Detrembleur & Pierre Archambeau & Sébastien Erpicum & Michel Pirotton, 2010. "Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 181-209, November.
    4. Muhammad Masood & Kuniyoshi Takeuchi, 2012. "Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 757-770, March.
    5. Johannes G. Leskens & Christian Kehl & Tim Tutenel & Timothy Kol & Gerwin de Haan & Guus Stelling & Elmar Eisemann, 2017. "An interactive simulation and visualization tool for flood analysis usable for practitioners," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 307-324, February.
    6. T. Ermolieva & T. Filatova & Y. Ermoliev & M. Obersteiner & K. M. de Bruijn & A. Jeuken, 2017. "Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location‐Specific Premiums in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 82-98, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    2. Fengxu Li & Jiquan Zhang & Tiehua Cao & Sijia Li & Yanan Chen & Xuanhe Liang & Xin Zhao & Junwei Chen, 2018. "Human Health Risk Assessment of Toxic Elements in Farmland Topsoil with Source Identification in Jilin Province, China," IJERPH, MDPI, vol. 15(5), pages 1-15, May.
    3. Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
    4. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    5. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    6. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    7. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    8. Adam Luke & Brad Kaplan & Jeff Neal & Jeremiah Lant & Brett Sanders & Paul Bates & Doug Alsdorf, 2015. "Hydraulic modeling of the 2011 New Madrid Floodway activation: a case study on floodway activation controls," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1863-1887, July.
    9. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    10. Ahmed Mustafa & Xiao Wei Zhang & Daniel G Aliaga & Martin Bruwier & Gen Nishida & Benjamin Dewals & Sébastian Erpicum & Pierre Archambeau & Michel Pirotton & Jacques Teller, 2020. "Procedural generation of flood-sensitive urban layouts," Environment and Planning B, , vol. 47(5), pages 889-911, June.
    11. Weilian Li & Jun Zhu & Yunhao Zhang & Lin Fu & Yuhang Gong & Ya Hu & Yungang Cao, 2020. "An on-demand construction method of disaster scenes for multilevel users," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 409-428, March.
    12. Melissa Haeffner & Dana Hellman, 2020. "The social geometry of collaborative flood risk management: a hydrosocial case study of Tillamook County, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3303-3325, September.
    13. R. Bharath & Amin Elshorbagy, 2018. "Flood mapping under uncertainty: a case study in the Canadian prairies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 537-560, November.
    14. Arunima Sarkar Basu & Laurence William Gill & Francesco Pilla & Bidroha Basu, 2022. "Assessment of Climate Change Impact on the Annual Maximum Flood in an Urban River in Dublin, Ireland," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    15. Jaskaran Kaur & Sartaj Ahmad Bhat & Navdeep Singh & Sandip Singh Bhatti & Varinder Kaur & Jatinder Kaur Katnoria, 2022. "Assessment of the Heavy Metal Contamination of Roadside Soils Alongside Buddha Nullah, Ludhiana, (Punjab) India," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    16. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    17. Gianna Ida Festa & Luigi Guerriero & Mariano Focareta & Giuseppe Meoli & Silvana Revellino & Francesco Maria Guadagno & Paola Revellino, 2022. "Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    18. Sébastien Rapinel & Nicolas Rossignol & Oliver Gore & Olivier Jambon & Guillaume Bouger & Jérome Mansons & Anne Bonis, 2018. "Daily Monitoring of Shallow and Fine-Grained Water Patterns in Wet Grasslands Combining Aerial LiDAR Data and In Situ Piezometric Measurements," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    19. Abhishek Ghosh & Shyamal Kumar Kar, 2018. "Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 349-368, October.
    20. Fabio, Farinosi & Carrera, Lorenzo & Maziotis, Alexandros & Mysiak, Jaroslav & Eboli, Fabio & Standardi, Gabriele, 2012. "Policy-relevant Assessment Method of Socio-economic Impacts of Floods: An Italian Case Study," Climate Change and Sustainable Development 143117, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2018:i:1:p:5-:d:191994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.