IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4335-d184594.html
   My bibliography  Save this article

Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century

Author

Listed:
  • Octavio Rojas

    (Department of Territorial Planning, Faculty of Environmental Sciences and EULA Chile Center, Universidad de Concepcion, Concepción 4089100, Chile)

  • María Mardones

    (Department of Territorial Planning, Faculty of Environmental Sciences and EULA Chile Center, Universidad de Concepcion, Concepción 4089100, Chile)

  • Carolina Martínez

    (School of History, Geography and Political Science, Institute of Geography, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Luis Flores

    (E.O.H. Engineer, Viña del Mar 2520000, Chile)

  • Katia Sáez

    (Department of Statistics, Faculty of Mathematical and Statistical Sciences, Universidad de Concepcion, Concepción 4089100, Chile)

  • Alberto Araneda

    (Department of Aquatic Systems and EULA Center, Faculty of Environmental Sciences, Universidad de Concepcion, Concepción 4089100, Chile)

Abstract

Coastal floods have become a serious problem on a global scale, increasing in frequency or magnitude due to natural conditions, and exacerbated by socioeconomic factors. This investigation analyzes the role of tides and average sea levels on the development and intensity of flooding in the lower section of the Andalién River, located toward the southern extreme of the coast of central Chile and northeast of Concepción, the country’s second most populous city. Numerical simulation (1D) was used in five modeled scenarios to determine potential flooding areas, demonstrating the influence of tides in flooding processes as far away as 7.3 km from the river mouth, which is reinforced by the fact that 57% of flooding events occur during syzygies. Further, a climate change-induced sea level rise of 60 cm from current levels by the end of the 21st century would produce a 4% increase in flood-prone areas, with 17% of flooding affecting the current built-up area and 83% of floodplains and salt marshes. Efforts must be made to protect or conserve these latter areas in order to increase natural resilience, given the high costs of implementing structural measures to protect future residential areas.

Suggested Citation

  • Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4335-:d:184594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Z. Kundzewicz & H.-J. Schellnhuber, 2004. "Floods in the IPCC TAR Perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 111-128, January.
    2. Steven Broekx & Steven Smets & Inge Liekens & Dirk Bulckaen & Leo Nocker, 2011. "Designing a long-term flood risk management plan for the Scheldt estuary using a risk-based approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 245-266, May.
    3. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    4. Dominik Paprotny & Paweł Terefenko, 2017. "New estimates of potential impacts of sea level rise and coastal floods in Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1249-1277, January.
    5. A. Kulkarni & T. Eldho & E. Rao & B. Mohan, 2014. "An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 403-425, September.
    6. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
    7. Muhammad Masood & Kuniyoshi Takeuchi, 2012. "Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 757-770, March.
    8. Octavio Rojas & María Mardones & Carolina Rojas & Carolina Martínez & Luis Flores, 2017. "Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    9. Darrien Mah & Frederik Putuhena & Sai Lai, 2011. "Modelling the flood vulnerability of deltaic Kuching City, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 865-875, September.
    10. Rojas, Carolina & Munizaga, Juan & Rojas, Octavio & Martínez, Carolina & Pino, Joan, 2019. "Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning," Land Use Policy, Elsevier, vol. 80(C), pages 47-56.
    11. Dominik Paprotny & Antonia Sebastian & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman, 2018. "Trends in flood losses in Europe over the past 150 years," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Lara & Felipe Bucci & Cristobal Palma & Juan Munizaga & Victor Montre-Águila, 2021. "Development, urban planning and political decisions. A triad that built territories at risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1935-1957, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    2. Octavio Rojas & María Mardones & Carolina Rojas & Carolina Martínez & Luis Flores, 2017. "Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    3. Rojas, Carolina & Munizaga, Juan & Rojas, Octavio & Martínez, Carolina & Pino, Joan, 2019. "Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning," Land Use Policy, Elsevier, vol. 80(C), pages 47-56.
    4. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    5. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    6. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    7. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    8. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    9. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    10. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    11. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    12. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    13. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    14. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    15. Tsegaye Tadesse & Menghestab Haile & Gabriel Senay & Brian D. Wardlow & Cody L. Knutson, 2008. "The need for integration of drought monitoring tools for proactive food security management in sub‐Saharan Africa," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 265-279, November.
    16. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    17. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    18. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    19. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    20. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4335-:d:184594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.