IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2803-d189314.html
   My bibliography  Save this article

Tuberculosis Transmission in Households and Classrooms of Adolescent Cases Compared to the Community in China

Author

Listed:
  • Dongxiang Pan

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China
    Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hatyai 90110, Songkhla, Thailand)

  • Mei Lin

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China
    Contributed equally to this work.)

  • Rushu Lan

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Edward A Graviss

    (Department of Pathology and Genomic Medicine, The Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX 77030, USA)

  • Dingwen Lin

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Dabin Liang

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Xi Long

    (School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China)

  • Huifang Qin

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Liwen Huang

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Minying Huang

    (Department of Tuberculosis Prevention and Control, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, Guangxi, China)

  • Virasakdi Chongsuvivatwong

    (Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hatyai 90110, Songkhla, Thailand
    Contributed equally to this work.)

Abstract

The aim of this paper is to evaluate the link between the history of exposure to tuberculosis (TB) in the household and diagnosed TB cases at school, and to compare the detection rate of active TB among household contacts and classroom contacts of adolescent TB cases with the rates among contacts of healthy controls. From November 2016 to December 2017, a prospective matched case-control study was conducted using passively identified index adolescent student cases from the TB surveillance system and healthy controls (matched by county, school type, sex, age and ethnicity). Contacts in households and classrooms of index cases and of controls were investigated. Matched tabulation of 117 case-control pairs revealed exposure to TB in the household as a strong risk factor (odds ratio (OR) = 21.0, 95% confidence interval (CI): 3.4, 868.6). Forty-five (case detection rate 0.69%) and two (case detection rate 0.03%) new active TB cases were detected among 6512 and 6480 classroom contacts of the index cases and controls, respectively. Having an index case in the classroom significantly increased the risk of classmates contracting active TB (OR = 22.5, 95% CI: 5.9, 191.4). Our findings suggested that previous exposure to TB in the household could lead a child to catch TB at school, then spread TB to classmates.

Suggested Citation

  • Dongxiang Pan & Mei Lin & Rushu Lan & Edward A Graviss & Dingwen Lin & Dabin Liang & Xi Long & Huifang Qin & Liwen Huang & Minying Huang & Virasakdi Chongsuvivatwong, 2018. "Tuberculosis Transmission in Households and Classrooms of Adolescent Cases Compared to the Community in China," IJERPH, MDPI, vol. 15(12), pages 1-10, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2803-:d:189314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhezhe Cui & Dingwen Lin & Virasakdi Chongsuvivatwong & Edward A. Graviss & Angkana Chaiprasert & Prasit Palittapongarnpim & Mei Lin & Jing Ou & Jinming Zhao, 2019. "Hot and Cold Spot Areas of Household Tuberculosis Transmission in Southern China: Effects of Socio-Economic Status and Mycobacterium tuberculosis Genotypes," IJERPH, MDPI, vol. 16(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    5. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    7. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    8. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    9. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    10. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    11. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    12. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    13. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    14. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    15. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    17. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    18. Hammoumi, Aayah & Qesmi, Redouane, 2020. "Impact assessment of containment measure against COVID-19 spread in Morocco," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Sudhir Venkatesan & Jonathan S Nguyen-Van-Tam & Peer-Olaf Siebers, 2019. "A novel framework for evaluating the impact of individual decision-making on public health outcomes and its potential application to study antiviral treatment collection during an influenza pandemic," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2803-:d:189314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.