IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i6p555-d99418.html
   My bibliography  Save this article

Ephedra -Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats

Author

Listed:
  • Jing-Hua Wang

    (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do 10326, Korea
    Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Meishan Road 103, Hefei 230038, China)

  • Bong-Soo Kim

    (Department of Life Sciences, Hallym University, Chuncheon, Gangwon-do 24252, Korea)

  • Kyungsun Han

    (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do 10326, Korea)

  • Hojun Kim

    (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa, Goyang, Gyeonggi-do 10326, Korea)

Abstract

Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

Suggested Citation

  • Jing-Hua Wang & Bong-Soo Kim & Kyungsun Han & Hojun Kim, 2017. "Ephedra -Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats," IJERPH, MDPI, vol. 14(6), pages 1-20, May.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:555-:d:99418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/6/555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/6/555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valentina Tremaroli & Fredrik Bäckhed, 2012. "Functional interactions between the gut microbiota and host metabolism," Nature, Nature, vol. 489(7415), pages 242-249, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanpeng Ma & Yujun Jiang & Beixue Zhang & Jian Pang & Xiaoying Xu & Jianzhi Sun & Xin Lv & Qian Cai, 2019. "Comparison of the Modulatory Effect on Intestinal Microbiota between Raw and Bran-Fried Atractylodis Rhizoma in the Rat Model of Spleen-Deficiency Syndrome," IJERPH, MDPI, vol. 16(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongli Qin & Lina Jia & Huijiao Liu & Wenqiang Ma & Xinmin Ren & Haifeng Li & Yuanwu Liu & Haiwen Li & Shuoqian Ma & Mei Liu & Pingping Li & Jinghua Yan & Jiyan Zhang & Yangdong Guo & Hua You & Yan Gu, 2021. "Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Vinod Nikhra, 2019. "The Novel Dimensions of Cardio-Metabolic Health Gut Microbiota, Dysbiosis and its Fallouts," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 28-37, June.
    3. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    4. Julie Reygner & Claire Joly Condette & Aurélia Bruneau & Stéphane Delanaud & Larbi Rhazi & Flore Depeint & Latifa Abdennebi-Najar & Veronique Bach & Camille Mayeur & Hafida Khorsi-Cauet, 2016. "Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME ® Model," IJERPH, MDPI, vol. 13(11), pages 1-18, November.
    5. Kang Li & Zeng Dan & Luobu Gesang & Hong Wang & Yongjian Zhou & Yanlei Du & Yi Ren & Yixiang Shi & Yuqiang Nie, 2016. "Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    6. Oriol Juanola & Sebastián Martínez-López & Rubén Francés & Isabel Gómez-Hurtado, 2021. "Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors," IJERPH, MDPI, vol. 18(10), pages 1-24, May.
    7. Giulia Angelini & Lidia Castagneto-Gissey & Serenella Salinari & Alessandro Bertuzzi & Danila Anello & Meenakshi Pradhan & Marlen Zschätzsch & Paul Ritter & Carel W. Le Roux & Francesco Rubino & Nicol, 2022. "Upper gut heat shock proteins HSP70 and GRP78 promote insulin resistance, hyperglycemia, and non-alcoholic steatohepatitis," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Gregory E Miller & Phillip A Engen & Patrick M Gillevet & Maliha Shaikh & Masoumeh Sikaroodi & Christopher B Forsyth & Ece Mutlu & Ali Keshavarzian, 2016. "Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    9. Pasquale Comberiati & Maria Di Cicco & Francesco Paravati & Umberto Pelosi & Alessandro Di Gangi & Stefania Arasi & Simona Barni & Davide Caimmi & Carla Mastrorilli & Amelia Licari & Fernanda Chiera, 2021. "The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis," IJERPH, MDPI, vol. 18(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:555-:d:99418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.