IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v104y2024ics0160289624000278.html
   My bibliography  Save this article

Comparing factor and network models of cognitive abilities using twin data

Author

Listed:
  • Knyspel, Jacob
  • Plomin, Robert

Abstract

Network models have become a popular alternative to factor models for analysing the phenotypic relationships among cognitive abilities. Studies have begun to compare these models directly to one another using cognitive ability data, although such a comparison has so far not extended to genetics. Our aim with this study was therefore to compare factor and network models of cognitive abilities first at a phenotypic level and then at a genetic level. We analyzed data from the Twins Early Development Study that were collected using 14 cognitive ability measures from 11,290 twins in the UK aged 12 years old. We conducted phenotypic and genetic analyses in which numerous factor and network models were tested, including a novel network twin model. Factor and network models both provided useful representations of the phenotypic and genetic relationships among cognitive abilities. Surprisingly, several relationships among cognitive abilities within the genetic networks were negative, which suggests that these cognitive abilities might share some genetic variants with inverse effects, although more research is currently needed to confirm this. Implications for future genomic research are discussed.

Suggested Citation

  • Knyspel, Jacob & Plomin, Robert, 2024. "Comparing factor and network models of cognitive abilities using twin data," Intelligence, Elsevier, vol. 104(C).
  • Handle: RePEc:eee:intell:v:104:y:2024:i:c:s0160289624000278
    DOI: 10.1016/j.intell.2024.101833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289624000278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2024.101833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    3. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    4. Javier de la Fuente & Gail Davies & Andrew D. Grotzinger & Elliot M. Tucker-Drob & Ian J. Deary, 2021. "A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data," Nature Human Behaviour, Nature, vol. 5(1), pages 49-58, January.
    5. Procopio, Francesca & Zhou, Quan & Wang, Ziye & Gidziela, Agnieska & Rimfeld, Kaili & Malanchini, Margherita & Plomin, Robert, 2022. "The genetics of specific cognitive abilities," Intelligence, Elsevier, vol. 95(C).
    6. Gail Davies & Max Lam & Sarah E. Harris & Joey W. Trampush & Michelle Luciano & W. David Hill & Saskia P. Hagenaars & Stuart J. Ritchie & Riccardo E. Marioni & Chloe Fawns-Ritchie & David C. M. Liewal, 2018. "Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    7. Sacha Epskamp & Mijke Rhemtulla & Denny Borsboom, 2017. "Generalized Network Psychometrics: Combining Network and Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 904-927, December.
    8. Andrew D. Grotzinger & Mijke Rhemtulla & Ronald Vlaming & Stuart J. Ritchie & Travis T. Mallard & W. David Hill & Hill F. Ip & Riccardo E. Marioni & Andrew M. McIntosh & Ian J. Deary & Philipp D. Koel, 2019. "Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits," Nature Human Behaviour, Nature, vol. 3(5), pages 513-525, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sacha Epskamp & Adela-Maria Isvoranu & Mike W.-L. Cheung, 2022. "Meta-analytic Gaussian Network Aggregation," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 12-46, March.
    2. Conte, Federica & Costantini, Giulio & Rinaldi, Luca & Gerosa, Tiziano & Girelli, Luisa, 2020. "Intellect is not that expensive: differential association of cultural and socio-economic factors with crystallized intelligence in a sample of Italian adolescents," Intelligence, Elsevier, vol. 81(C).
    3. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    4. Mingyang Li & Xixi Dang & Yiwei Chen & Zhifan Chen & Xinyi Xu & Zhiyong Zhao & Dan Wu, 2024. "Cognitive processing speed and accuracy are intrinsically different in genetic architecture and brain phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    6. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    7. Rozgonjuk, Dmitri & Schmitz, Florian & Kannen, Christopher & Montag, Christian, 2021. "Cognitive ability and personality: Testing broad to nuanced associations with a smartphone app," Intelligence, Elsevier, vol. 88(C).
    8. Andrew D. Grotzinger & Javier de la Fuente & Gail Davies & Michel G. Nivard & Elliot M. Tucker-Drob, 2022. "Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Pedro Henrique Ribeiro Santiago & Gustavo Hermes Soares & Lisa Gaye Smithers & Rachel Roberts & Lisa Jamieson, 2022. "Psychological Network of Stress, Coping and Social Support in an Aboriginal Population," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    10. Savi, Alexander O. & Marsman, Maarten & van der Maas, Han L.J., 2021. "Evolving networks of human intelligence," Intelligence, Elsevier, vol. 88(C).
    11. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    12. Elise Barboza, Gia & Valentine, Romello, 2022. "A network analysis of post-traumatic stress among youth aging out of the foster care system," Children and Youth Services Review, Elsevier, vol. 140(C).
    13. Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.
    14. Jonsdottir, Gudrun A. & Einarsson, Gudmundur & Thorleifsson, Gudmar & Magnusson, Sigurdur H. & Gunnarsson, Arni F. & Frigge, Michael L. & Gisladottir, Rosa S. & Unnsteinsdottir, Unnur & Gunnarsson, Bj, 2021. "Genetic propensities for verbal and spatial ability have opposite effects on body mass index and risk of schizophrenia," Intelligence, Elsevier, vol. 88(C).
    15. Piotr Bereznowski & Paweł A. Atroszko & Roman Konarski, 2024. "Network Approach to Work Addiction: A Cross-Cultural Study," SAGE Open, , vol. 14(2), pages 21582440241, May.
    16. Georgia Mangion & Melanie Simmonds-Buckley & Stephen Kellett & Peter Taylor & Amy Degnan & Charlotte Humphrey & Kate Freshwater & Marisa Poggioli & Cristina Fiorani, 2022. "Modelling Identity Disturbance: A Network Analysis of the Personality Structure Questionnaire (PSQ)," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    17. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    18. Pietro Demela & Nicola Pirastu & Blagoje Soskic, 2023. "Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Wang, Chao & Zhan, Jinyan & Wang, Huihui & Yang, Zheng & Chu, Xi & Liu, Wei & Teng, Yanmin & Liu, Huizi & Wang, Yifan, 2022. "Multi-group analysis on the mechanism of residents' low-carbon behaviors in Beijing, China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:104:y:2024:i:c:s0160289624000278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.