IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i12p1528-d122016.html
   My bibliography  Save this article

Adsorption of Pb(II) and Cu(II) by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times

Author

Listed:
  • Myoung-Eun Lee

    (Department of Urban System Engineering, Gyeoungnam National University of Science and Technology (GNTECH), Dongjin-ro 33, Jinju, Gyeongnam 52725, Korea)

  • Jin Hee Park

    (Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Korea)

  • Jae Woo Chung

    (Department of Environmental Engineering, Gyeoungnam National University of Science and Technology (GNTECH), Dongjin-ro 33, Jinju, Gyeongnam 52725, Korea)

Abstract

Ginkgo trees are common street trees in Korea, and the large amounts of leaves that fall onto the streets annually need to be cleaned and treated. Therefore, fallen gingko leaves have been used as a raw material to produce biochar for the removal of heavy metals from solutions. Gingko-leaf-derived biochar was produced under various carbonization temperatures and times. This study evaluated the physicochemical properties and adsorption characteristics of gingko-leaf-derived biochar samples produced under different carbonization conditions regarding Pb(II) and Cu(II). The biochar samples that were produced at 800 °C for 90 and 120 min contained the highest oxygen- and nitrogen-substituted carbons, which might contribute to a high metal-adsorption rate. The intensity of the phosphate bond was increased with the increasing of the carbonization temperature up to 800 °C and after 90 min of carbonization. The Pb(II) and Cu(II) adsorption capacities were the highest when the gingko-leaf-derived biochar was produced at 800 °C, and the removal rates were 99.2% and 34.2%, respectively. The highest removal rate was achieved when the intensity of the phosphate functional group in the biochar was the highest. Therefore, the gingko-leaf-derived biochar produced at 800 °C for 90 min can be used as an effective bio-adsorbent in the removal of metals from solutions.

Suggested Citation

  • Myoung-Eun Lee & Jin Hee Park & Jae Woo Chung, 2017. "Adsorption of Pb(II) and Cu(II) by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times," IJERPH, MDPI, vol. 14(12), pages 1-9, December.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:12:p:1528-:d:122016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/12/1528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/12/1528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Mazurek & Sebastian Drużyński & Urszula Kiełkowska & Adriana Wróbel-Kaszanek & Bartłomiej Igliński & Marcin Cichosz, 2024. "The Application of Pyrolysis Biochar Obtained from Waste Rapeseed Cake to Remove Copper from Industrial Wastewater: An Overview," Energies, MDPI, vol. 17(2), pages 1-16, January.
    2. Kazuki Sugawara & Kouhei Ichio & Yumiko Ichikawa & Hitoshi Ogawa & Seiichi Suzuki, 2022. "Effects of Pyrolysis Temperature and Chemical Modification on the Adsorption of Cd and As(V) by Biochar Derived from Pteris vittata," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    3. Li Liu & Shisuo Fan & Yang Li, 2018. "Removal Behavior of Methylene Blue from Aqueous Solution by Tea Waste: Kinetics, Isotherms and Mechanism," IJERPH, MDPI, vol. 15(7), pages 1-16, June.
    4. Haixia Wang & Mingliang Zhang & Qi Lv, 2019. "Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    5. Yang Liu & Xiaoyu Liu & Ni Ren & Yanfang Feng & Lihong Xue & Linzhang Yang, 2019. "Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation," IJERPH, MDPI, vol. 16(14), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Kanbur, Ravi & Bento, Antonio M. & Leard, Benjamin, 2012. "SUPER-ADDITIONALITY: A Neglected Force in Markets for Carbon Offsets," Working Papers 128811, Cornell University, Department of Applied Economics and Management.
    3. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    8. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    9. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    10. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    11. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    12. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    13. Karolina Barčauskaitė & Olga Anne & Ieva Mockevičienė & Regina Repšienė & Gintaras Šiaudinis & Danutė Karčauskienė, 2023. "Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    14. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    15. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    16. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    18. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:12:p:1528-:d:122016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.