IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i9p894-d77809.html
   My bibliography  Save this article

Economic Burden of Hospitalizations for Heat-Related Illnesses in the United States, 2001–2010

Author

Listed:
  • Michael T. Schmeltz

    (ASPPH/EPA Environmental Health Fellowship Program at the United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC 20001, USA)

  • Elisaveta P. Petkova

    (National Center for Disaster Preparedness, Earth Institute, Columbia University, New York, NY 10027, USA)

  • Janet L. Gamble

    (United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC 20460, USA)

Abstract

Understanding how heat waves affect morbidity and mortality, as well as the associated economic costs, is essential for characterizing the human health impacts of extreme heat under a changing climate. Only a handful of studies have examined healthcare costs associated with exposures to high temperatures. This research explores costs associated with hospitalizations for heat-related illness (HRI) in the United States using the 2001 to 2010 Nationwide Inpatient Sample (NIS). Descriptive statistics of patient data for HRI hospitalizations were examined and costs of hospitalizations were reported using the all-payer inpatient cost-to-charge ratio. Costs were examined using a log-gamma model with patient and hospital characteristics included as fixed effects. Adjusted mean costs were then compared across racial groups. The mean costs of HRI hospitalizations were higher among racial/ethnic minorities compared to Whites, who accounted for almost 65% of all HRI hospitalizations. Observed differences in costs based on income, insurance, and gender were also significant. These results suggest that these populations are suffering disproportionately from health inequity, thus, they could shoulder greater disease and financial burdens due to climate change. These findings may have important implications in understanding the economic impact public health planning and interventions will have on preventing hospitalizations related to extreme heat.

Suggested Citation

  • Michael T. Schmeltz & Elisaveta P. Petkova & Janet L. Gamble, 2016. "Economic Burden of Hospitalizations for Heat-Related Illnesses in the United States, 2001–2010," IJERPH, MDPI, vol. 13(9), pages 1-11, September.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:894-:d:77809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/9/894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/9/894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengmeng Li & Shaohua Gu & Peng Bi & Jun Yang & Qiyong Liu, 2015. "Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review," IJERPH, MDPI, vol. 12(5), pages 1-28, May.
    2. Fran Sussman & Nisha Krishnan & Kathryn Maher & Rawlings Miller & Charlotte Mack & Paul Stewart & Kate Shouse & Bill Perkins, 2014. "Climate change adaptation cost in the US: what do we know?," Climate Policy, Taylor & Francis Journals, vol. 14(2), pages 242-282, March.
    3. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    4. Elisaveta P. Petkova & Daniel A. Bader & G. Brooke Anderson & Radley M. Horton & Kim Knowlton & Patrick L. Kinney, 2014. "Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities," IJERPH, MDPI, vol. 11(11), pages 1-13, October.
    5. Michael T Schmeltz & Grace Sembajwe & Peter J Marcotullio & Jean A Grassman & David U Himmelstein & Stephanie Woolhandler, 2015. "Identifying Individual Risk Factors and Documenting the Pattern of Heat-Related Illness through Analyses of Hospitalization and Patterns of Household Cooling," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    6. Michael T. Schmeltz & Peter J. Marcotullio & David U. Himmelstein & Steffie Woolhandler & Grace Sembajwe, 2016. "Outcomes of hospitalizations for common illnesses associated with a comorbid heat-related illness in the United States, 2001–2010," Climatic Change, Springer, vol. 138(3), pages 567-584, October.
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    8. McDonald, Yolanda J. & Grineski, Sara E. & Collins, Timothy W. & Kim, Young-An, 2015. "A scalable climate health justice assessment model," Social Science & Medicine, Elsevier, vol. 133(C), pages 242-252.
    9. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    2. David Albouy & Walter Graf & Ryan Kellogg & Hendrik Wolff, 2016. "Climate Amenities, Climate Change, and American Quality of Life," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 205-246.
    3. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    4. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    5. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    6. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    7. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    8. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    9. Nicholas Apergis & Alexandros Gabrielsen & Lee Smales, 2016. "(Unusual) weather and stock returns—I am not in the mood for mood: further evidence from international markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 30(1), pages 63-94, February.
    10. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    11. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    12. Helena Fornwagner & Oliver P. Hauser, 2022. "Climate Action for (My) Children," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 95-130, January.
    13. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    14. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    15. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    16. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    17. Robert S. Pindyck, 2011. "Modeling the Impact of Warming in Climate Change Economics," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 47-71, National Bureau of Economic Research, Inc.
    18. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    19. Tol, Richard S. J., 2011. "Modified Ramsey Discounting for Climate Change," Papers WP368, Economic and Social Research Institute (ESRI).
    20. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:894-:d:77809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.