IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i3p274-d64900.html
   My bibliography  Save this article

An Application of the Multivariate Linear Mixed Model to the Analysis of Shoulder Complexity in Breast Cancer Patients

Author

Listed:
  • Gholamreza Oskrochi

    (Department of Mechanical Engineering an Mathematical Sciences, Oxford Brookes University, Wheatley Campus, Wheatley, Oxford OX33 1HX, UK)

  • Emmanuel Lesaffre

    (Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Kapucijnenvoer 35 blok D, B-3000 Leuven, Belgium)

  • Youssof Oskrochi

    (Department of Primary Care and Public Health, Imperial College London, Charing Cross Hospital, London W6 8RP, UK)

  • Delva Shamley

    (Clinical Research Centre, University of Cape Town, Old Main Building, L51. Groote Schuur Hospital Observatory, Cape Town 7700, South Africa)

Abstract

In this study, four major muscles acting on the scapula were investigated in patients who had been treated in the last six years for unilateral carcinoma of the breast. Muscle activity was assessed by electromyography during abduction and adduction of the affected and unaffected arms. The main principal aim of the study was to compare shoulder muscle activity in the affected and unaffected shoulder during elevation of the arm. A multivariate linear mixed model was introduced and applied to address the principal aims. The result of fitting this model to the data shows a huge improvement as compared to the alternatives.

Suggested Citation

  • Gholamreza Oskrochi & Emmanuel Lesaffre & Youssof Oskrochi & Delva Shamley, 2016. "An Application of the Multivariate Linear Mixed Model to the Analysis of Shoulder Complexity in Breast Cancer Patients," IJERPH, MDPI, vol. 13(3), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:3:p:274-:d:64900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/3/274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/3/274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Bellinghausen & Nicolas Vaillant, 2010. "Les déterminants du stress professionnel ressenti : une estimation par la méthode des équations d’estimation généralisées," Économie et Prévision, Programme National Persée, vol. 195(4), pages 67-82.
    2. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    3. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    4. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    5. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    6. Victor De Oliveira, 2017. "Geostatistical Binary Data: Models, Properties And Connections," Working Papers 0151mss, College of Business, University of Texas at San Antonio.
    7. Chen, Hsiang-Chun & Wehrly, Thomas E., 2016. "Approximate uniform shrinkage prior for a multivariate generalized linear mixed model," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 148-161.
    8. John B. Holmes & Matthew R. Schofield & Richard J. Barker, 2022. "Pólya‐gamma data augmentation and latent variable models for multivariate binomial data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 194-218, January.
    9. Dittrich, R. & Hatzinger, R. & Katzenbeisser, W., 2002. "Modelling dependencies in paired comparison data: A log-linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 39-57, July.
    10. Sara Amoroso, 2017. "Multilevel heterogeneity of R&D cooperation and innovation determinants," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(1), pages 93-120, April.
    11. Alan Agresti & Ivy Liu, 2001. "Strategies for Modeling a Categorical Variable Allowing Multiple Category Choices," Sociological Methods & Research, , vol. 29(4), pages 403-434, May.
    12. S. Rabe-Hesketh & A. Skrondal, 2001. "Parameterization of Multivariate Random Effects Models for Categorical Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1256-1263, December.
    13. Parsons, Nick R. & Costa, Matthew L. & Achten, Juul & Stallard, Nigel, 2009. "Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 632-641, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:3:p:274-:d:64900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.