IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i9p11254-11268d55527.html
   My bibliography  Save this article

The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

Author

Listed:
  • Kaj M. Hansen

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

  • Jesper H. Christensen

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

  • Jørgen Brandt

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

Abstract

Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

Suggested Citation

  • Kaj M. Hansen & Jesper H. Christensen & Jørgen Brandt, 2015. "The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study," IJERPH, MDPI, vol. 12(9), pages 1-15, September.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11254-11268:d:55527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/9/11254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/9/11254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    2. Camilla Geels & Camilla Andersson & Otto Hänninen & Anne Sofie Lansø & Per E. Schwarze & Carsten Ambelas Skjøth & Jørgen Brandt, 2015. "Future Premature Mortality Due to O 3 , Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock," IJERPH, MDPI, vol. 12(3), pages 1-33, March.
    3. Kyrre Sundseth & Jozef M. Pacyna & Anna Banel & Elisabeth G. Pacyna & Arja Rautio, 2015. "Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic," IJERPH, MDPI, vol. 12(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    2. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    3. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    4. Bell, Kendon & Zilberman, David, 2016. "The potential for renewable fuels under greenhouse gas pricing: The case of sugarcane in Brazil," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt03h2850w, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    6. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    7. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.
    8. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    9. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    10. Amber Wright & Mark Schwartz & Robert Hijmans & H. Bradley Shaffer, 2016. "Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians," Climatic Change, Springer, vol. 134(4), pages 579-591, February.
    11. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Merete Tallaksen & Sharad K. Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    12. Goher-Ur-Rehman Mir & Servaas Storm, 2016. "Carbon Emissions and Economic Growth: Production-based versus Consumption-based Evidence on Decoupling," Working Papers Series 41, Institute for New Economic Thinking.
    13. Hongjie Sun & Shuwen Niu & Xiqiang Wang, 2019. "Future Regional Contributions for Climate Change Mitigation: Insights from Energy Investment Gap and Policy Cost," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    14. Lucas R. Vargas Zeppetello & Susan C. Cook-Patton & Luke A. Parsons & Nicholas H. Wolff & Timm Kroeger & David S. Battisti & Joseph Bettles & June T. Spector & Arjun Balakumar & Yuta J. Masuda, 2022. "Consistent cooling benefits of silvopasture in the tropics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Soheil Shayegh & Valerie Thomas, 2015. "Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions," Climatic Change, Springer, vol. 128(1), pages 1-15, January.
    16. Christopher J. Amante & Jacob Dice & David Rodziewicz & Eugene Wahl, 2020. "Housing Market Value Impairment from Future Sea-level Rise Inundation," Research Working Paper RWP 20-05, Federal Reserve Bank of Kansas City.
    17. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    18. William B Monahan & Tammy Cook & Forrest Melton & Jeff Connor & Ben Bobowski, 2013. "Forecasting Distributional Responses of Limber Pine to Climate Change at Management-Relevant Scales in Rocky Mountain National Park," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    19. Dellink, Rob & Lanzi, Elisa, 2017. "The joint economic consequences of climate change and air pollution," Conference papers 332909, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Francisco Estrada & Richard S. J. Tol, 2015. "Toward Impact Functions For Stochastic Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11254-11268:d:55527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.