IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v007i07.html
   My bibliography  Save this article

Gibbs Variable Selection using BUGS

Author

Listed:
  • Ntzoufras, Ioannis

Abstract

In this paper we discuss and present in detail the implementation of Gibbs variable selection as defined by Dellaportas et al. (2000, 2002) using the BUGS software (Spiegelhalter et al. ,'96a,b,c). The specification of the likelihood, prior and pseudo-prior distributions of the parameters as well as the prior term and model probabilities are described in detail. Guidance is also provided for the calculation of the posterior probabilities within BUGS environment when the number of models is limited. We illustrate the application of this methodology in a variety of problems including linear regression, log-linear and binomial response models.

Suggested Citation

  • Ntzoufras, Ioannis, 2002. "Gibbs Variable Selection using BUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i07).
  • Handle: RePEc:jss:jstsof:v:007:i07
    DOI: http://hdl.handle.net/10.18637/jss.v007.i07
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v007i07/GVSusingBUGS.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v007i07/gvs-bugsfiles.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v007.i07?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
    2. Mohammadreza Mohebbi & Rory Wolfe & Andrew Forbes, 2014. "Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach," IJERPH, MDPI, vol. 11(1), pages 1-20, January.
    3. Ozkok, Erengul & Streftaris, George & Waters, Howard R. & Wilkie, A. David, 2012. "Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 266-279.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:007:i07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.