IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i6p199-d1408550.html
   My bibliography  Save this article

Metaverse and Fashion: An Analysis of Consumer Online Interest

Author

Listed:
  • Carmen Ruiz Viñals

    (Business and Economics Department, Universitat Abat Oliba CEU, 08022 Barcelona, Spain)

  • Marta Gil Ibáñez

    (Business and Economics Department, Universitat Abat Oliba CEU, 08022 Barcelona, Spain)

  • José Luis Del Olmo Arriaga

    (Business and Economics Department, Universitat Abat Oliba CEU, 08022 Barcelona, Spain)

Abstract

Recent studies have demonstrated the value that the Internet and web applications bring to businesses. Among other tools are those that enable the analysis and monitoring of searches, such as Google Trends, which is currently used by the fashion industry to guide experiential practices in a context of augmented reality and/or virtual reality, and even to predict purchasing behaviours through the metaverse. Data from this tool provide insight into fashion consumer search patterns. Understanding and managing this digital tool is an essential factor in rethinking businesses’ marketing strategies. The aim of this study is to analyse online user search behaviour by analysing and monitoring the terms “metaverse” and “fashion” on Google Trends. A quantitative descriptive cross-sectional method was employed. The results show that there is growing consumer interest in both concepts on the Internet, despite the lack of homogeneity in the behaviour of the five Google search tools.

Suggested Citation

  • Carmen Ruiz Viñals & Marta Gil Ibáñez & José Luis Del Olmo Arriaga, 2024. "Metaverse and Fashion: An Analysis of Consumer Online Interest," Future Internet, MDPI, vol. 16(6), pages 1-15, June.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:199-:d:1408550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/6/199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/6/199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giang Barrera, Kevin & Shah, Denish, 2023. "Marketing in the Metaverse: Conceptual understanding, framework, and research agenda," Journal of Business Research, Elsevier, vol. 155(PA).
    2. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    3. Rangaswamy, Arvind & Giles, C. Lee & Seres, Silvija, 2009. "A Strategic Perspective on Search Engines: Thought Candies for Practitioners and Researchers," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 49-60.
    4. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    2. Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    3. Juan Camilo Anzoátegui-Zapata & Juan Camilo Galvis-Ciro, 2020. "Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 99-122, November.
    4. Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021. "Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg," Forecasting, MDPI, vol. 3(4), pages 1-30, October.
    5. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    6. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    7. Emanuele Ciani & Adeline Delavande & Ben Etheridge & Marco Francesconi, 2023. "Policy Uncertainty and Information Flows: Evidence from Pension Reform Expectations," The Economic Journal, Royal Economic Society, vol. 133(649), pages 98-129.
    8. Sara Ayllón & Samuel Lado, 2022. "Food Hardship in the US During the Pandemic: What Can We Learn From Real‐Time Data?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 518-540, June.
    9. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    10. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    11. Szalkowski, Gabriel Andy & Mikalef, Patrick, 2023. "Understanding digital platform evolution using compartmental models," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    12. Serhan Cevik, 2022. "Where should we go? Internet searches and tourist arrivals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
    13. Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
    14. Shin, Sunny Y. & McKenzie, Jordi & Crosby, Paul, 2024. "Cultural affinity and international trade in motion pictures: Empirical evidence using categorised internet search activity," Economic Modelling, Elsevier, vol. 136(C).
    15. Jukka Ruohonen & Sami Hyrynsalmi, 2017. "Evaluating the use of internet search volumes for time series modeling of sales in the video game industry," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 351-370, November.
    16. Malyy, Maksim & Tekic, Zeljko & Podladchikova, Tatiana, 2021. "The value of big data for analyzing growth dynamics of technology-based new ventures," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    17. Christine Dauth & Julia Lang, 2024. "Continuing vocational training in times of economic uncertainty: an event-study analysis in real time," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-23, December.
    18. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    19. Tsoyu Calvin Lin & Shih-Hsun Hsu, 2020. "Forecasting Housing Markets from Number of Visits to Actual Price Registration System," International Real Estate Review, Global Social Science Institute, vol. 23(4), pages 505-536.
    20. Krzysztof Drachal & Daniel González Cortés, 2022. "Estimation of Lockdowns’ Impact on Well-Being in Selected Countries: An Application of Novel Bayesian Methods and Google Search Queries Data," IJERPH, MDPI, vol. 20(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:199-:d:1408550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.