IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i7p229-d1182205.html
   My bibliography  Save this article

Hybridizing Fuzzy String Matching and Machine Learning for Improved Ontology Alignment

Author

Listed:
  • Mohammed Suleiman Mohammed Rudwan

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa)

  • Jean Vincent Fonou-Dombeu

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa)

Abstract

Ontology alignment has become an important process for identifying similarities and differences between ontologies, to facilitate their integration and reuse. To this end, fuzzy string-matching algorithms have been developed for strings similarity detection and have been used in ontology alignment. However, a significant limitation of existing fuzzy string-matching algorithms is their reliance on lexical/syntactic contents of ontology only, which do not capture semantic features of ontologies. To address this limitation, this paper proposed a novel method that hybridizes fuzzy string-matching algorithms and the Deep Bidirectional Transformer (BERT) deep learning model with three machine learning regression classifiers, namely, K-Nearest Neighbor Regression (kNN), Decision Tree Regression (DTR), and Support Vector Regression (SVR), to perform the alignment of ontologies. The use of the kNN, SVR, and DTR classifiers in the proposed method resulted in the building of three similarity models (SM), encoded SM-kNN, SM-SVR, and SM-DTR, respectively. The experiments were conducted on a dataset obtained from the anatomy track in the Ontology Alignment and Evaluation Initiative 2022 (OAEI 2022). The performances of the SM-kNN, SM-SVR, and SM-DTR models were evaluated using various metrics including precision, recall, F1-score, and accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and running times. The experimental results revealed that the SM-SVR model achieved the best recall of 1.0, while the SM-DTR model exhibited the best precision, accuracy, and F1-score of 0.98, 0.97, and 0.98, respectively. Furthermore, the results showed that the SM-kNN, SM-SVR, and SM-DTR models outperformed state-of-the-art alignment systems that participated in the OAEI 2022 challenge, indicating the superior capability of the proposed method.

Suggested Citation

  • Mohammed Suleiman Mohammed Rudwan & Jean Vincent Fonou-Dombeu, 2023. "Hybridizing Fuzzy String Matching and Machine Learning for Improved Ontology Alignment," Future Internet, MDPI, vol. 15(7), pages 1-31, June.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:7:p:229-:d:1182205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/7/229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/7/229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sengodan Mani & Samukutty Annadurai, 2022. "An Improved Structural-Based Ontology Matching Approach Using Similarity Spreading," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 18(1), pages 1-17, January.
    2. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    3. Xingsi Xue & Chaofan Yang & Chao Jiang & Pei-Wei Tsai & Guojun Mao & Hai Zhu & Abd E.I.-Baset Hassanien, 2021. "Optimizing Ontology Alignment through Linkage Learning on Entity Correspondences," Complexity, Hindawi, vol. 2021, pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mogeeb A. A. Mosleh & Adel Assiri & Abdu H. Gumaei & Bader Fahad Alkhamees & Manal Al-Qahtani, 2024. "A Bidirectional Arabic Sign Language Framework Using Deep Learning and Fuzzy Matching Score," Mathematics, MDPI, vol. 12(8), pages 1-46, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    4. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    5. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    6. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
    7. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    9. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    10. Jaewook Lee & Woosuk Sung & Joo-Ho Choi, 2015. "Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles," Energies, MDPI, vol. 8(6), pages 1-17, June.
    11. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    12. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    13. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    15. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    16. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    17. Li, Junfu & Wang, Lixin & Lyu, Chao & Zhang, Liqiang & Wang, Han, 2015. "Discharge capacity estimation for Li-ion batteries based on particle filter under multi-operating conditions," Energy, Elsevier, vol. 86(C), pages 638-648.
    18. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    19. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    20. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:7:p:229-:d:1182205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.