Product Evaluation Prediction Model Based on Multi-Level Deep Feature Fusion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
- Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
- Anirut Kantasa-ard & Maroua Nouiri & Abdelghani Bekrar & Abdessamad Ait el cadi & Yves Sallez, 2021. "Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand," International Journal of Production Research, Taylor & Francis Journals, vol. 59(24), pages 7491-7515, December.
- Stephen Stajkowski & Deepak Kumar & Pijush Samui & Hossein Bonakdari & Bahram Gharabaghi, 2020. "Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
- José Luis de Andrés Honrubia & José Gaviria de la Puerta & Fernando Cortés & Urko Aguirre-Larracoechea & Aitor Goti & Jone Retolaza, 2021. "Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks," Mathematics, MDPI, vol. 9(10), pages 1-23, May.
- Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
- Mohammed Achite & Saeed Samadianfard & Nehal Elshaboury & Milad Sharafi, 2023. "Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11189-11207, October.
- Thais de Castro Moraes & Xue‐Ming Yuan & Ek Peng Chew, 2024. "Hybrid convolutional long short‐term memory models for sales forecasting in retail," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1278-1293, August.
- Kamani, D. & Ardehali, M.M., 2023. "Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources," Energy, Elsevier, vol. 268(C).
- Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
- Moradian, Sogol & Olbert, Agnieszka I. & Gharbia, Salem & Iglesias, Gregorio, 2023. "Copula-based projections of wind power: Ireland as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Fábio Polola Mamede & Roberto Fray da Silva & Irineu de Brito Junior & Hugo Tsugunobu Yoshida Yoshizaki & Celso Mitsuo Hino & Carlos Eduardo Cugnasca, 2023. "Deep Learning and Statistical Models for Forecasting Transportation Demand: A Case Study of Multiple Distribution Centers," Logistics, MDPI, vol. 7(4), pages 1-19, November.
- Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
- Zhu, Y. & Wei, Z. & Li, Y.X. & Du, H.X. & Guo, Y., 2022. "Energy and atmosphere system planning of coal-dependent cities based on an interval minimax-regret coupled joint-probabilistic cost-benefit approach," Energy, Elsevier, vol. 239(PB).
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).
- Dorota Kamrowska-Załuska, 2021. "Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities," Land, MDPI, vol. 10(11), pages 1-19, November.
- Yuqi Dong & Jianzhou Wang & Xinsong Niu & Bo Zeng, 2023. "Combined water quality forecasting system based on multiobjective optimization and improved data decomposition integration strategy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 260-287, March.
- Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
- Georgios I. Tsoumalis & Zafeirios N. Bampos & Georgios V. Chatzis & Pandelis N. Biskas, 2022. "Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services," Energies, MDPI, vol. 15(22), pages 1-24, November.
More about this item
Keywords
product evaluation prediction; Depthwise Separable Convolutions; Bidirectional Long Short-Term Memories; attention mechanism; genetic algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:1:p:31-:d:1029557. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.