IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v12y2020i10p162-d419850.html
   My bibliography  Save this article

An Internet of Things Model for Improving Process Management on University Campus

Author

Listed:
  • William Villegas-Ch

    (Escuela de Ingeniería en Tecnologías de la Información, FICA, Universidad de Las Américas, Quito 170125, Ecuador)

  • Xavier Palacios-Pacheco

    (Departamento de Sistemas, Universidad Internacional del Ecuador, Quito 170411, Ecuador)

  • Milton Román-Cañizares

    (Escuela de Ingeniería en Tecnologías de la Información, FICA, Universidad de Las Américas, Quito 170125, Ecuador)

Abstract

Currently, there are several emerging technologies that seek to improve quality of life. To achieve this, it is important to establish the various technologies’ fields of action and to determine which technology meets the conditions established by the environment in which it is designed to operate in order to satisfy the needs of society. One type of environment is the university campus. This particular environment is conducive to the development and testing of technological innovations that might later be replicated in larger environments such as smart cities. The technology that has experienced the greatest development and introduction of applications is the Internet of Things. The wide variety of available devices and the wide reach of the Internet have become ideal parameters for the application of the Internet of Things in areas that previously required the work of people. The Internet of Things is seen as an assistant to, or a substitute for, processes that are generally routine and which require the effort of one or more people. This work focuses specifically on processes to improve administrative management in a university through the use of the Internet of Things.

Suggested Citation

  • William Villegas-Ch & Xavier Palacios-Pacheco & Milton Román-Cañizares, 2020. "An Internet of Things Model for Improving Process Management on University Campus," Future Internet, MDPI, vol. 12(10), pages 1-16, September.
  • Handle: RePEc:gam:jftint:v:12:y:2020:i:10:p:162-:d:419850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/12/10/162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/12/10/162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Saber Talari & Miadreza Shafie-khah & Pierluigi Siano & Vincenzo Loia & Aurelio Tommasetti & João P. S. Catalão, 2017. "A Review of Smart Cities Based on the Internet of Things Concept," Energies, MDPI, vol. 10(4), pages 1-23, March.
    3. William Villegas-Ch & Adrián Arias-Navarrete & Xavier Palacios-Pacheco, 2020. "Proposal of an Architecture for the Integration of a Chatbot with Artificial Intelligence in a Smart Campus for the Improvement of Learning," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    4. William Villegas-Ch & Xavier Palacios-Pacheco & Sergio Luján-Mora, 2019. "Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus," Sustainability, MDPI, vol. 11(10), pages 1-28, May.
    5. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Villegas-Ch. & Milton Roman-Cañizares & Santiago Sánchez-Viteri & Joselin García-Ortiz & Walter Gaibor-Naranjo, 2021. "Analysis of the State of Learning in University Students with the Use of a Hadoop Framework," Future Internet, MDPI, vol. 13(6), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Villegas-Ch & Jhoann Molina-Enriquez & Carlos Chicaiza-Tamayo & Iván Ortiz-Garcés & Sergio Luján-Mora, 2019. "Application of a Big Data Framework for Data Monitoring on a Smart Campus," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    2. Ayyoob Sharifi & Zaheer Allam & Bakhtiar Feizizadeh & Hessam Ghamari, 2021. "Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    3. William Villegas-Ch & Xavier Palacios-Pacheco & Milton Román-Cañizares, 2020. "Integration of IoT and Blockchain to in the Processes of a University Campus," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    4. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    5. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    6. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    7. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    8. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    9. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    10. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    11. Marsal-Llacuna, Maria-Lluïsa, 2018. "Future living framework: Is blockchain the next enabling network?," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 226-234.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Jonek-Kowalska, Izabela & Musioł-Urbańczyk, Anna & Podgórska, Marzena & Wolny, Maciej, 2021. "Does motivation matter in evaluation of research institutions? Evidence from Polish public universities," Technology in Society, Elsevier, vol. 67(C).
    15. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
    16. Madhukar Patil & M. Suresh, 2019. "Modelling the Enablers of Workforce Agility in IoT Projects: A TISM Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(2), pages 157-175, June.
    17. Abdel Ghafar, Ahmed Ismail & Vazquez Castro, Ágeles & Essam Khedr, Mohamed, 2019. "Multidimensional Self-Organizing Chord-Based Networking for Internet of Things," 2nd Europe – Middle East – North African Regional ITS Conference, Aswan 2019: Leveraging Technologies For Growth 201736, International Telecommunications Society (ITS).
    18. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    19. Artur Pollak & Agata Hilarowicz & Maciej Walczak & Damian Gąsiorek, 2020. "A Framework of Action for Implementation of Industry 4.0. an Empirically Based Research," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    20. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:12:y:2020:i:10:p:162-:d:419850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.