IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i11p236-d285968.html
   My bibliography  Save this article

Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems

Author

Listed:
  • Kambombo Mtonga

    (African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda)

  • Santhi Kumaran

    (African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda)

  • Chomora Mikeka

    (Department of Physics, University of Malawi, Zomba P.O. Box 280, Malawi)

  • Kayalvizhi Jayavel

    (Department of Information Technology, School of Computing, SRM Institute of Science and Technology, Kattankulathur 603203, India)

  • Jimmy Nsenga

    (African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda)

Abstract

A mismatch between staffing ratios and service demand leads to overcrowding of patients in waiting rooms of health centers. Overcrowding consequently leads to excessive patient waiting times, incomplete preventive service delivery and disgruntled medical staff. Worse, due to the limited patient load that a health center can handle, patients may leave the clinic before the medical examination is complete. It is true that as one health center may be struggling with an excessive patient load, another facility in the vicinity may have a low patient turn out. A centralized hospital management system, where hospitals are able to timely exchange patient load information would allow excess patient load from an overcrowded health center to be re-assigned in a timely way to the nearest health centers. In this paper, a machine learning-based patient load prediction model for forecasting future patient loads is proposed. Given current and historical patient load data as inputs, the model outputs future predicted patient loads. Furthermore, we propose re-assigning excess patient loads to nearby facilities that have minimal load as a way to control overcrowding and reduce the number of patients that leave health facilities without receiving medical care as a result of overcrowding. The re-assigning of patients will imply a need for transportation for the patient to move from one facility to another. To avoid putting a further strain on the already fragmented ambulatory services, we assume the existence of a scheduled bus system and propose an Internet of Things (IoT) integrated smart bus system. The developed IoT system can be tagged on buses and can be queried by patients through representation state transfer application program interfaces (APIs) to provide them with the position of the buses through web app or SMS relative to their origin and destination stop. The back end of the proposed system is based on message queue telemetry transport, which is lightweight, data efficient and scalable, unlike the traditionally used hypertext transfer protocol.

Suggested Citation

  • Kambombo Mtonga & Santhi Kumaran & Chomora Mikeka & Kayalvizhi Jayavel & Jimmy Nsenga, 2019. "Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems," Future Internet, MDPI, vol. 11(11), pages 1-24, November.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:11:p:236-:d:285968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/11/236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/11/236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    2. Georgios Fragkos & Pavlos Athanasios Apostolopoulos & Eirini Eleni Tsiropoulou, 2019. "ESCAPE: Evacuation Strategy through Clustering and Autonomous Operation in Public Safety Systems," Future Internet, MDPI, vol. 11(1), pages 1-17, January.
    3. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    4. Alberto Mozo & Bruno Ordozgoiti & Sandra Gómez-Canaval, 2018. "Forecasting short-term data center network traffic load with convolutional neural networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abderrahim Zannou & Abdelhak Boulaalam & El Habib Nfaoui, 2020. "SIoT: A New Strategy to Improve the Network Lifetime with an Efficient Search Process," Future Internet, MDPI, vol. 13(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    2. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    3. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    6. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    7. Rian Dolphin & Barry Smyth & Ruihai Dong, 2024. "Contrastive Learning of Asset Embeddings from Financial Time Series," Papers 2407.18645, arXiv.org.
    8. Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
    9. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    10. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    11. Antoine Proteau & Antoine Tahan & Ryad Zemouri & Marc Thomas, 2023. "Predicting the quality of a machined workpiece with a variational autoencoder approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 719-737, February.
    12. Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
    13. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    14. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    15. Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
    16. Raphael Paulo Beal Piovezan & Pedro Paulo Andrade Junior & Sérgio Luciano Ávila, 2024. "Machine Learning Method for Return Direction Forecast of Exchange Traded Funds (ETFs) Using Classification and Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1827-1852, May.
    17. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    18. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    19. Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
    20. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:11:p:236-:d:285968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.