IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191939.html
   My bibliography  Save this article

Forecasting short-term data center network traffic load with convolutional neural networks

Author

Listed:
  • Alberto Mozo
  • Bruno Ordozgoiti
  • Sandra Gómez-Canaval

Abstract

Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.

Suggested Citation

  • Alberto Mozo & Bruno Ordozgoiti & Sandra Gómez-Canaval, 2018. "Forecasting short-term data center network traffic load with convolutional neural networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-31, February.
  • Handle: RePEc:plo:pone00:0191939
    DOI: 10.1371/journal.pone.0191939
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191939
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191939&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    2. M. Piacentini & F. Rinaldi, 2011. "Path loss prediction in urban environment using learning machines and dimensionality reduction techniques," Computational Management Science, Springer, vol. 8(4), pages 371-385, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kambombo Mtonga & Santhi Kumaran & Chomora Mikeka & Kayalvizhi Jayavel & Jimmy Nsenga, 2019. "Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems," Future Internet, MDPI, vol. 11(11), pages 1-24, November.
    2. Shuoben Bi & Cong Yuan & Shaoli Liu & Luye Wang & Lili Zhang, 2022. "Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    3. Alberto Mozo & Stanislav Vakaruk & J. Enrique Sierra-García & Antonio Pastor, 2024. "Anticipatory analysis of AGV trajectory in a 5G network using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1541-1569, April.
    4. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    5. Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Chenhua Ni & Xiandong Ma, 2018. "Prediction of Wave Power Generation Using a Convolutional Neural Network with Multiple Inputs," Energies, MDPI, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    3. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    4. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    5. Lihki Rubio & Adriana Palacio Pinedo & Adriana Mejía Castaño & Filipe Ramos, 2023. "Forecasting volatility by using wavelet transform, ARIMA and GARCH models," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(3), pages 803-830, December.
    6. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    7. Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
    8. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    9. Jun Dong & Xihao Dou & Aruhan Bao & Yaoyu Zhang & Dongran Liu, 2022. "Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning Machine Technique: A Case Study in China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    10. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, vol. 6(11), pages 1-24, November.
    11. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    12. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    13. Ramazan Gencay & Ege Yazgan, 2017. "When Are Wavelets Useful Forecasters?," Working Papers 1704, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    14. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    15. He, Y.X. & Yang, L.F. & He, H.Y. & Luo, T. & Wang, Y.J., 2011. "Electricity demand price elasticity in China based on computable general equilibrium model analysis," Energy, Elsevier, vol. 36(2), pages 1115-1123.
    16. Chuntian Cheng & Bin Luo & Shumin Miao & Xinyu Wu, 2016. "Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market," Energies, MDPI, vol. 9(10), pages 1-22, October.
    17. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "A Multi-Stage Intelligent Model for Electricity Price Prediction Based on the Beveridge–Nelson Disintegration Approach," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    18. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.
    19. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    20. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.