IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i4p51-1044d1520848.html
   My bibliography  Save this article

Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models

Author

Listed:
  • Bishal Poudel

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, IL 62901, USA)

  • Dewasis Dahal

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, IL 62901, USA)

  • Mandip Banjara

    (Stantec, 601 Grassmere Park, Nashville, TN 37211, USA)

  • Ajay Kalra

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, IL 62901, USA)

Abstract

The rising frequency and severity of droughts requires accurate monitoring and forecasting to reduce the impact on water resources and communities. This study aims to investigate drought monitoring and categorization, while enhancing drought forecasting by using three machine learning models—Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF). The models were trained on the study region’s historic precipitation and temperature data (minimum and maximum) from 1960 to 2021. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were computed for a time scale of 3, 6 and 12 months. The monthly precipitation data were used for creating lag scenarios and were used as input features for the models to improve the models’ performance and reduce overfitting. Statistical parameters like the coefficient of determination (R 2 ), Mean Absolute Error (MAE), Root mean square error (RMSE) and Nash–Sutcliffe Efficiency (NSE) were determined to evaluate the model accuracy. For forecasting, the SPEI3, ANN and SVM models show better performance (R 2 > 0.9) than the RF models when the 3-month lag data were used as input features. For SPEI6 and SPEI12, the 6-month lag and 12-month lag data, respectively, were needed to increase the models’ accuracy. The models exhibited RMSE values of 0.27 for ANN, 0.28 for SVM, and 0.37 for RF for the SPEI3, indicating the superior performance of the former two. The models’ accuracy increases as the lag period increases for SPI forecasting. Overall, the ANN and SVM models outperformed the RF model for forecasting long-term drought.

Suggested Citation

  • Bishal Poudel & Dewasis Dahal & Mandip Banjara & Ajay Kalra, 2024. "Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models," Forecasting, MDPI, vol. 6(4), pages 1-19, November.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:51-1044:d:1520848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/4/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/4/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Puyu & Wang, Bin & Liu, De Li & Yu, Qiang, 2019. "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 173(C), pages 303-316.
    2. Chaitanya B. Pande & N. L. Kushwaha & Israel R. Orimoloye & Rohitashw Kumar & Hazem Ghassan Abdo & Abebe Debele Tolche & Ahmed Elbeltagi, 2023. "Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1367-1399, February.
    3. Amin Asadollahi & Binod Ale Magar & Bishal Poudel & Asyeh Sohrabifar & Ajay Kalra, 2024. "Application of Machine Learning Models for Improving Discharge Prediction in Ungauged Watershed: A Case Study in East DuPage, Illinois," Geographies, MDPI, vol. 4(2), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruchika Nanwani & Md Mahmudul Hasan & Silvia Cirstea, 2023. "Techniques used to predict climate risks: a brief literature survey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 925-951, September.
    2. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Natalie Teale & David A. Robinson, 2022. "Long-term variability in atmospheric moisture transport and relationship with heavy precipitation in the eastern USA," Climatic Change, Springer, vol. 175(1), pages 1-23, November.
    4. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    5. Xu, Zhenheng & Sun, Hao & Zhang, Tian & Xu, Huanyu & Wu, Dan & Gao, JinHua, 2023. "Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China," Agricultural Water Management, Elsevier, vol. 286(C).
    6. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    7. Farshad Ahmadi & Saeid Mehdizadeh & Babak Mohammadi, 2021. "Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4127-4147, September.
    8. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    9. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    10. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    11. Jia, Zhicheng & Ou, Chengming & Sun, Shoujiang & Sun, Ming & Zhao, Yihong & Li, Changran & Zhao, Shiqiang & Wang, Juan & Jia, Shangang & Mao, Peisheng, 2024. "Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Qian Zhu & Yulin Luo & Dongyang Zhou & Yue-Ping Xu & Guoqing Wang & Ye Tian, 2021. "Drought prediction using in situ and remote sensing products with SVM over the Xiang River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2161-2185, January.
    13. Endre Harsányi & Bashar Bashir & Firas Alsilibe & Muhammad Farhan Ul Moazzam & Tamás Ratonyi & Abdullah Alsalman & Adrienn Széles & Aniko Nyeki & István Takács & Safwan Mohammed, 2022. "Predicting Modified Fournier Index by Using Artificial Neural Network in Central Europe," IJERPH, MDPI, vol. 19(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:51-1044:d:1520848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.