IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i4p50-1025d1515568.html
   My bibliography  Save this article

Synergy of Modern Analytics and Innovative Managerial Decision-Making in the Turbulent and Uncertain New Normal

Author

Listed:
  • Maria Kovacova

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia)

  • Eva Kalinova

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia)

  • Pavol Durana

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia)

  • Katarina Frajtova Michalikova

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia)

Abstract

This paper focuses on analyzing the relationship between the financial performance of companies and their ability to utilize modern business methods. Financial analysis was conducted using the example of the automobile manufacturer Škoda Auto, with the results providing deeper insights into the company’s financial situation. The companies examined in this study were scored and underwent regression and cluster analyses. A questionnaire focusing on the modernity of advertising in selected companies was answered by 276 respondents. Based on the findings, a model for evaluating the modernity and stability of companies was developed, combining various factors including financial indicators and the adoption of modern technologies. The results indicate that there is a relationship between financial performance and the modernization of companies, although this relationship is not always straightforward. In particular, the operating profit and current ratio emerged as important factors influencing modernization. Overall, it can be concluded that the financial performance and modernization of companies are interconnected, but their relationship is complex and requires further investigation. This paper is an important contribution to understanding company modernization and sets the stage for further studies on this issue.

Suggested Citation

  • Maria Kovacova & Eva Kalinova & Pavol Durana & Katarina Frajtova Michalikova, 2024. "Synergy of Modern Analytics and Innovative Managerial Decision-Making in the Turbulent and Uncertain New Normal," Forecasting, MDPI, vol. 6(4), pages 1-25, November.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:50-1025:d:1515568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/4/50/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/4/50/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Goldmann, 2020. "Use of Financial Analysis in Operational and Strategic Management in Practice of Polish Business," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Meltem Ş. Ucal (ed.), Eurasian Business Perspectives, pages 115-125, Springer.
    2. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Botta & Luca Colombo, 2016. "Macroeconomic and Institutional Determinants of Capital Structure Decisions," DISCE - Working Papers del Dipartimento di Economia e Finanza def038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    2. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    3. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    4. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Richardson, Grant & Taylor, Grantley & Lanis, Roman, 2015. "The impact of financial distress on corporate tax avoidance spanning the global financial crisis: Evidence from Australia," Economic Modelling, Elsevier, vol. 44(C), pages 44-53.
    6. Kristóf, Tamás, 2008. "A csődelőrejelzés és a nem fizetési valószínűség számításának módszertani kérdéseiről [Some methodological questions of bankruptcy prediction and probability of default estimation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 441-461.
    7. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    8. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    9. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    10. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    11. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    12. Wen Su, 2021. "Default Distances Based on the CEV-KMV Model," Papers 2107.10226, arXiv.org, revised May 2022.
    13. Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
    14. Amir Ghafourian Shagerdi & Ali Mahdavipour & Reza Jahanshiri Ariyan Tashakori Baghdar & Mohammad Sajjad Ghafourian Shagerdi, 2020. "Investment Efficiency and Audit Fee from the Perspective of the Role of Financial Distress," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 318-333.
    15. Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
    16. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    17. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    18. Jing Zeng & Xiongyuan Wang & Kam C. Chan, 2021. "Does the value‐added tax Reform increase a firm’s collateral bank loans? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 29(4), pages 681-710, October.
    19. Jason J. Constable & David R. Woodliff, 1994. "Predicting Corporate Failure Using Publicly Available Information," Australian Accounting Review, CPA Australia, vol. 4(7), pages 13-27, May.
    20. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:50-1025:d:1515568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.