IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v1y2022i2p11-154d819564.html
   My bibliography  Save this article

Comparison between Information Theoretic Measures to Assess Financial Markets

Author

Listed:
  • Luckshay Batra

    (Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India)

  • Harish Chander Taneja

    (Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India)

Abstract

Information theoretic measures were applied to the study of the randomness associations of different financial time series. We studied the level of similarities between information theoretic measures and the various tools of regression analysis, i.e., between Shannon entropy and the total sum of squares of the dependent variable, relative mutual information and coefficients of correlation, conditional entropy and residual sum of squares, etc. We observed that mutual information and its dynamical extensions provide an alternative approach with some advantages to study the association between several international stock indices. Furthermore, mutual information and conditional entropy are relatively efficient compared to the measures of statistical dependence.

Suggested Citation

  • Luckshay Batra & Harish Chander Taneja, 2022. "Comparison between Information Theoretic Measures to Assess Financial Markets," FinTech, MDPI, vol. 1(2), pages 1-18, May.
  • Handle: RePEc:gam:jfinte:v:1:y:2022:i:2:p:11-154:d:819564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/1/2/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/1/2/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreia Dionisio & Rui Menezes & Diana A. Mendes, 2007. "Entropy and Uncertainty Analysis in Financial Markets," Papers 0709.0668, arXiv.org.
    2. Batra, Luckshay & Taneja, H.C., 2020. "Evaluating volatile stock markets using information theoretic measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    4. Batra, Luckshay & Taneja, H.C., 2021. "Approximate-Analytical solution to the information measure’s based quanto option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Les Gulko, 1999. "The Entropy Theory Of Stock Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 331-355.
    6. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    7. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    8. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Citera & Francesco De Pretis, 2023. "An Information Theory Approach to the Stock and Cryptocurrency Market: A Statistical Equilibrium Perspective," Papers 2310.04907, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    2. Weibo Li & Wei Liu & Lei Wu & Xue Guo, 2021. "Risk spillover networks in financial system based on information theory," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    3. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    4. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
    5. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    6. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2022. "Describing the effect of influential spreaders on the different sectors of Indian market: a complex networks perspective," Papers 2303.05432, arXiv.org.
    7. Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
    8. Ku, Seungmo & Lee, Changju & Chang, Woojin & Wook Song, Jae, 2020. "Fractal structure in the S&P500: A correlation-based threshold network approach," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Batra, Luckshay & Taneja, H.C., 2021. "Approximate-Analytical solution to the information measure’s based quanto option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Grilli, Luca & Santoro, Domenico, 2020. "Boltzmann Entropy in Cryptocurrencies: A Statistical Ensemble Based Approach," MPRA Paper 99591, University Library of Munich, Germany.
    11. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    12. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    13. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    14. Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016. "The study of Thai stock market across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
    15. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Regime-dependent topological properties of biofuels networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(2), pages 1-12, February.
    16. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    18. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    19. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    20. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:1:y:2022:i:2:p:11-154:d:819564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.