IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p737-d78073.html
   My bibliography  Save this article

Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation

Author

Listed:
  • Nor Farahaida Abdul Rahman

    (Faculty of Electrical Engineering, Engineering Complex, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia)

  • Mohd Amran Mohd Radzi

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Azura Che Soh

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Norman Mariun

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Nasrudin Abd Rahim

    (UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

An adaptive hybrid fuzzy-proportional plus crisp-integral current control algorithm (CCA) for regulating supply current and enhancing the operation of a shunt active power filter (SAPF) is presented. It introduces a unique integration of fuzzy-proportional (Fuzzy-P) and crisp-integral (Crisp-I) current controllers. The Fuzzy-P current controller is developed to perform gain tuning procedure and proportional control action. This controller inherits the simplest configuration; it is constructed using a single-input single-output fuzzy rule configuration. Thus, an execution of few fuzzy rules is sufficient for the controller’s operation. Furthermore, the fuzzy rule is developed using the relationship of currents only. Hence, it simplifies the controller development. Meanwhile, the Crisp-I current controller is developed to perform integral control action using a controllable gain value; to improve the steady-state control mechanism. The gain value is modified and controlled using the Fuzzy-P current controller’s output variable. Therefore, the gain value will continuously be adjusted at every sample period (or throughout the SAPF operation). The effectiveness of the proposed CCA in regulating supply current is validated in both simulation and experimental work. All results have proven that the SAPF using the proposed CCA is capable to regulate supply current during steady-state and dynamic-state operations. At the same time, the SAPF is able to enhance its operation in compensating harmonic currents and reactive power. Furthermore, the implementation of the proposed CCA has resulted more stable dc-link voltage waveform.

Suggested Citation

  • Nor Farahaida Abdul Rahman & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim, 2016. "Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation," Energies, MDPI, vol. 9(9), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:737-:d:78073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamel Djazia & Fateh Krim & Abdelmadjid Chaoui & Mustapha Sarra, 2015. "Active Power Filtering Using the ZDPC Method under Unbalanced and Distorted Grid Voltage Conditions," Energies, MDPI, vol. 8(3), pages 1-22, February.
    2. Ioannis Bouloumpasis & Panagis Vovos & Konstantinos Georgakas & Nicholas A. Vovos, 2015. "Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources," Energies, MDPI, vol. 8(4), pages 1-17, March.
    3. Bijan Rahmani & Weixing Li & Guihua Liu, 2016. "A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Jiashen Teh & Ching-Ming Lai, 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction," Energies, MDPI, vol. 11(5), pages 1-22, May.
    2. Leonardo Rodrigues Limongi & Fabricio Bradaschia & Calebe Hermann de Oliveira Lima & Marcelo Cabral Cavalcanti, 2018. "Reactive Power and Current Harmonic Control Using a Dual Hybrid Power Filter for Unbalanced Non-Linear Loads," Energies, MDPI, vol. 11(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirreza Naderipour & Zulkurnain Abdul-Malek & Mohammad Reza Miveh & Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Foad. H. Gandoman, 2018. "A Harmonic Compensation Strategy in a Grid-Connected Photovoltaic System Using Zero-Sequence Control," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    3. Panagis N. Vovos & Ioannis D. Bouloumpasis & Konstantinos G. Georgakas, 2020. "Assessment Indexes for Converter P-Q Control Coupling," Energies, MDPI, vol. 13(5), pages 1-17, March.
    4. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    5. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    6. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    7. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    8. Hina Mahar & Hafiz Mudasir Munir & Jahangir Badar Soomro & Faheem Akhtar & Rashid Hussain & Mohamed F. Elnaggar & Salah Kamel & Josep M. Guerrero, 2022. "Implementation of ANN Controller Based UPQC Integrated with Microgrid," Mathematics, MDPI, vol. 10(12), pages 1-24, June.
    9. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.
    10. Seyyed Yousef Mousazadeh Mousavi & Alireza Jalilian & Mehdi Savaghebi & Josep M. Guerrero, 2017. "Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids," Energies, MDPI, vol. 10(10), pages 1-19, October.
    11. Yap Hoon & Mohd Amran Mohd Radzi, 2018. "PLL-Less Three-Phase Four-Wire SAPF with STF- dq 0 Technique for Harmonics Mitigation under Distorted Supply Voltage and Unbalanced Load Conditions," Energies, MDPI, vol. 11(8), pages 1-27, August.
    12. Ling Yang & Yandong Chen & Hongliang Wang & An Luo & Kunshan Huai, 2018. "Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions," Energies, MDPI, vol. 11(12), pages 1-20, December.
    13. Houssam Eddine Medouce & Hocine Benalla, 2017. "Predictive model approach based direct power control for power quality conditioning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1832-1848, November.
    14. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2016. "DC-Link Capacitor Voltage Regulation for Three-Phase Three-Level Inverter-Based Shunt Active Power Filter with Inverted Error Deviation Control," Energies, MDPI, vol. 9(7), pages 1-25, July.
    15. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Condit," Energies, MDPI, vol. 10(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:737-:d:78073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.