IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2143-d164159.html
   My bibliography  Save this article

PLL-Less Three-Phase Four-Wire SAPF with STF- dq 0 Technique for Harmonics Mitigation under Distorted Supply Voltage and Unbalanced Load Conditions

Author

Listed:
  • Yap Hoon

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Mohd Amran Mohd Radzi

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

This paper presents a non-iterative technique that generates reference current to manage operation of a three-phase four-wire shunt active power filter which employs a three-leg split capacitor voltage source inverter (VSI) topology. The proposed technique integrates together a self-tuning-filter (STF) and direct-quadrature-zero ( dq 0) principle (referred here as STF- dq 0), allowing the controlled shunt active power filter (SAPF) to perform effectively under distorted source voltages and unbalanced load conditions. Unlike the previous technique developed based on the standard dq 0 principle, the proposed technique does not require any service from a phase-locked loop (PLL) where two STFs are applied to separate harmonic and fundamental elements for the purpose of generating synchronization phases and reference current, respectively. Simulation work which includes connection of the SAPF circuits, design of control techniques and all the necessary assessments are conducted in MATLAB-Simulink platform. Performance achieved by the SAPF while utilizing the proposed technique is thoroughly investigated and benchmarked with that demonstrated by the SAPF while using the standard dq 0 technique, to evaluate the inherent advantages. Exhaustive simulation results are provided and thoroughly discussed to support design concept, effectiveness, and benefits of the proposed technique.

Suggested Citation

  • Yap Hoon & Mohd Amran Mohd Radzi, 2018. "PLL-Less Three-Phase Four-Wire SAPF with STF- dq 0 Technique for Harmonics Mitigation under Distorted Supply Voltage and Unbalanced Load Conditions," Energies, MDPI, vol. 11(8), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2143-:d:164159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamel Djazia & Fateh Krim & Abdelmadjid Chaoui & Mustapha Sarra, 2015. "Active Power Filtering Using the ZDPC Method under Unbalanced and Distorted Grid Voltage Conditions," Energies, MDPI, vol. 8(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nor Farahaida Abdul Rahman & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim, 2016. "Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation," Energies, MDPI, vol. 9(9), pages 1-18, September.
    2. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    3. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    4. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    5. Amirreza Naderipour & Zulkurnain Abdul-Malek & Mohammad Reza Miveh & Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Foad. H. Gandoman, 2018. "A Harmonic Compensation Strategy in a Grid-Connected Photovoltaic System Using Zero-Sequence Control," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Houssam Eddine Medouce & Hocine Benalla, 2017. "Predictive model approach based direct power control for power quality conditioning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1832-1848, November.
    7. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2016. "DC-Link Capacitor Voltage Regulation for Three-Phase Three-Level Inverter-Based Shunt Active Power Filter with Inverted Error Deviation Control," Energies, MDPI, vol. 9(7), pages 1-25, July.
    8. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Condit," Energies, MDPI, vol. 10(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2143-:d:164159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.