IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1759-d156176.html
   My bibliography  Save this article

Transient Analyses and Energy Balance of Air Flow in Road Tunnels

Author

Listed:
  • Aleksander Król

    (Faculty of Transport, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Małgorzata Król

    (Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

The issue of airflow dynamic in a road tunnel is considered in this study and its impact on smoke management and people safety is highlighted. It was an attempt to estimate the time needed to reach a final steady state of airflow when the operation mode of jet fans was switched. The numerical model of the tunnel was solved with the use of Ansys Fluent. To reproduce the decrease of atmospheric pressure with height, relative static pressure was applied using UDF (User Defined Function). The ambient weather conditions were taken into account as well. The wind influence was introduced by the additional component of dynamic pressure applied against one of the tunnel portals also using UDF. There are some theoretical foundations of airflow in a tunnel presented in this paper. The obtained results were compared with the measurements carried out in a real road tunnel and the results obtained while applying the above-mentioned physical model. The main contribution of the presented work is the indication of a relatively high relaxation time of airflow in a tunnel, which could be important when designing the emergency pattern of a ventilation system. Additionally, some considerations of kinetic energy exchange between fan jet and air volume would be helpful when choosing fans for ventilation systems being designed.

Suggested Citation

  • Aleksander Król & Małgorzata Król, 2018. "Transient Analyses and Energy Balance of Air Flow in Road Tunnels," Energies, MDPI, vol. 11(7), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1759-:d:156176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong Sheng Huang & Chung Hwei Su & Cheng Bang Li & Ching Yuan Lin & Chun Chou Lin, 2016. "Enhancement of Fire Safety of an Existing Green Building due to Natural Ventilation," Energies, MDPI, vol. 9(3), pages 1-28, March.
    2. Wacław Dziurzyński & Andrzej Krach & Teresa Pałka, 2017. "Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling," Energies, MDPI, vol. 10(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorota Brzezińska & Paul Bryant & Adam S. Markowski, 2019. "An Alternative Evaluation and Indicating Methodology for Sustainable Fire Safety in the Process Industry," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    2. Teng-Yi Wang & Kuang-Chung Tsai, 2021. "Effects of Time to Unactuate Air Conditioning on Fire Growth," Energies, MDPI, vol. 14(11), pages 1-15, May.
    3. Aleksander Król & Małgorzata Król, 2018. "Study on Hot Gases Flow in Case of Fire in a Road Tunnel," Energies, MDPI, vol. 11(3), pages 1-16, March.
    4. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    5. Jie Hou & Gang Nie & Guoqing Li & Wei Zhao & Baoli Sheng, 2023. "Optimization of Branch Airflow Volume for Mine Ventilation Network Based on Sensitivity Matrix," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    6. Nikodem Szlązak & Marek Korzec, 2022. "The Solution of the Main Fan Station for Underground Mines Being Decommissioned in Terms of Reducing Energy Consumption by Ventilation," Energies, MDPI, vol. 15(13), pages 1-13, June.
    7. Bogusław Ptaszyński & Zbigniew Kuczera & Piotr Życzkowski & Rafał Łuczak, 2022. "Transport Efficiency of a Homogeneous Gaseous Substance in the Presence of Positive and Negative Gaseous Sources of Mass and Momentum," Energies, MDPI, vol. 15(17), pages 1-11, September.
    8. Bogusław Ptaszyński & Rafał Łuczak & Zbigniew Kuczera & Piotr Życzkowski, 2022. "Influence of Local Gas Sources with Variable Density and Momentum on the Flow of the Medium in the Conduit," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1759-:d:156176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.