IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8682-8703d54220.html
   My bibliography  Save this article

Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods

Author

Listed:
  • Samuel Van Ackere

    (Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Vrijdagmarkt 10-301, 9000 Ghent, Belgium)

  • Greet Van Eetvelde

    (Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Vrijdagmarkt 10-301, 9000 Ghent, Belgium)

  • David Schillebeeckx

    (Institute of Physics, Carl von Ossietzky University, Ammerländer Heerstraße 136, 26129 Oldenburg, Germany)

  • Enrica Papa

    (Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Vrijdagmarkt 10-301, 9000 Ghent, Belgium)

  • Karel Van Wyngene

    (Power-Link, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium)

  • Lieven Vandevelde

    (Power-Link, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium)

Abstract

Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).

Suggested Citation

  • Samuel Van Ackere & Greet Van Eetvelde & David Schillebeeckx & Enrica Papa & Karel Van Wyngene & Lieven Vandevelde, 2015. "Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods," Energies, MDPI, vol. 8(8), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8682-8703:d:54220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giacomarra, Marcella & Bono, Filippa, 2015. "European Union commitment towards RES market penetration: From the first legislative acts to the publication of the recent guidelines on State aid 2014/2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 218-232.
    2. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    3. Heidi Kreibich & Philip Bubeck & Michael Kunz & Holger Mahlke & Stefano Parolai & Bijan Khazai & James Daniell & Tobia Lakes & Kai Schröter, 2014. "A review of multiple natural hazards and risks in Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2279-2304, December.
    4. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis," Renewable Energy, Elsevier, vol. 33(6), pages 1237-1250.
    5. Hanslian, David & Hošek, Jiří, 2015. "Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic," Renewable Energy, Elsevier, vol. 77(C), pages 291-299.
    6. Olaofe, Zaccheus O. & Folly, Komla A., 2013. "Wind energy analysis based on turbine and developed site power curves: A case-study of Darling City," Renewable Energy, Elsevier, vol. 53(C), pages 306-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristian Skeie & Arild Gustavsen, 2021. "Utilising Open Geospatial Data to Refine Weather Variables for Building Energy Performance Evaluation—Incident Solar Radiation and Wind-Driven Infiltration Modelling," Energies, MDPI, vol. 14(4), pages 1-32, February.
    2. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    3. Christopher Jung, 2016. "High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series," Energies, MDPI, vol. 9(5), pages 1-20, May.
    4. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    2. Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
    3. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    4. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    5. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    6. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    7. Burnett, Dougal & Barbour, Edward & Harrison, Gareth P., 2014. "The UK solar energy resource and the impact of climate change," Renewable Energy, Elsevier, vol. 71(C), pages 333-343.
    8. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    9. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    10. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    11. Cross, Sam & Hast, Aira & Kuhi-Thalfeldt, Reeli & Syri, Sanna & Streimikiene, Dalia & Denina, Arta, 2015. "Progress in renewable electricity in Northern Europe towards EU 2020 targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1768-1780.
    12. Cheng, Xu & Yan, Bowen & Zhou, Xuhong & Yang, Qingshan & Huang, Guoqing & Su, Yanwen & Yang, Wei & Jiang, Yan, 2024. "Wind resource assessment at mountainous wind farm: Fusion of RANS and vertical multi-point on-site measured wind field data," Applied Energy, Elsevier, vol. 363(C).
    13. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    14. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    15. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    16. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
    17. Beccali, M. & Cirrincione, G. & Marvuglia, A. & Serporta, C., 2010. "Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor," Applied Energy, Elsevier, vol. 87(3), pages 884-893, March.
    18. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    19. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    20. Fant, Charles & Gunturu, Bhaskar & Schlosser, Adam, 2016. "Characterizing wind power resource reliability in southern Africa," Applied Energy, Elsevier, vol. 161(C), pages 565-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8682-8703:d:54220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.