IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p833-d80728.html
   My bibliography  Save this article

Thermal Analysis of an Industrial Furnace

Author

Listed:
  • Mirko Filipponi

    (CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Federico Rossi

    (CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Andrea Presciutti

    (CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Stefania De Ciantis

    (CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Beatrice Castellani

    (CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Ambro Carpinelli

    (Divisione Fucine di Acciai Speciali Terni, V.le B.Brin 218, 05100 Terni, Italy)

Abstract

Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

Suggested Citation

  • Mirko Filipponi & Federico Rossi & Andrea Presciutti & Stefania De Ciantis & Beatrice Castellani & Ambro Carpinelli, 2016. "Thermal Analysis of an Industrial Furnace," Energies, MDPI, vol. 9(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:833-:d:80728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Sang Heon & Chang, Daejun & Huh, Cheol, 2011. "Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace," Energy, Elsevier, vol. 36(2), pages 1265-1272.
    2. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    3. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajad Mirzaei & Nima Bohlooli Arkhazloo & Farzad Bazdidi-Tehrani & Jean-Benoit Morin & Abdelhalim Loucif & Mohammad Jahazi, 2023. "Influence of Spacers and Skid Sizes on Heat Treatment of Large Forgings within an Industrial Electric Furnace," Energies, MDPI, vol. 16(7), pages 1-18, March.
    2. Mersedeh Ghadamgahi & Patrik Ölund & Nils Å. I. Andersson & Pär Jönsson, 2017. "Numerical Study on the Effect of Lambda Value (Oxygen/Fuel Ratio) on Temperature Distribution and Efficiency of a Flameless Oxyfuel Combustion System," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Jiming Lin & Haozhen Li & Yong Zhang & Jianhong Yang, 2022. "Experimental and Numerical Study of a Two-Stage Swirl Burner," Energies, MDPI, vol. 15(3), pages 1-19, February.
    4. L. Schoina & R. Jones & S. Burgess & D. Vaughan & L. Andrews & A. Foley & A. Valera Medina, 2023. "Numerical and Techno-Economic Analysis of Batch Annealing Performance Improvements in Tinplate Manufacturing," Energies, MDPI, vol. 16(20), pages 1-28, October.
    5. Bo Gao & Chunsheng Wang & Yukun Hu & C. K. Tan & Paul Alun Roach & Liz Varga, 2018. "Function Value-Based Multi-Objective Optimisation of Reheating Furnace Operations Using Hooke-Jeeves Algorithm," Energies, MDPI, vol. 11(9), pages 1-18, September.
    6. Hadała, Beata & Malinowski, Zbigniew & Rywotycki, Marcin, 2017. "Energy losses from the furnace chamber walls during heating and heat treatment of heavy forgings," Energy, Elsevier, vol. 139(C), pages 298-314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    4. Hajaliakbari, Nasrollah & Hassanpour, Saied, 2017. "Analysis of thermal energy performance in continuous annealing furnace," Applied Energy, Elsevier, vol. 206(C), pages 829-842.
    5. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    6. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    7. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    8. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    9. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    10. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    11. Martin Robinius & Alexander Otto & Konstantinos Syranidis & David S. Ryberg & Philipp Heuser & Lara Welder & Thomas Grube & Peter Markewitz & Vanessa Tietze & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany," Energies, MDPI, vol. 10(7), pages 1-23, July.
    12. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    13. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    14. Claudio Cubito & Federico Millo & Giulio Boccardo & Giuseppe Di Pierro & Biagio Ciuffo & Georgios Fontaras & Simone Serra & Marcos Otura Garcia & Germana Trentadue, 2017. "Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-18, October.
    15. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    16. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    17. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    18. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.
    19. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Uncertainty analysis of an integrated energy system based on information theory," Energy, Elsevier, vol. 122(C), pages 649-662.
    20. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:833-:d:80728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.