IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p7161-7184d52622.html
   My bibliography  Save this article

Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

Author

Listed:
  • Zheng Guo

    (State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)

  • Pei Liu

    (State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)

  • Linwei Ma

    (State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)

  • Zheng Li

    (State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. Results show that low-carbon technologies remain essential contributors to reducing emissions and altering emissions trends up to 2050. By pushing the limit of current practicality, emissions reduction can reach 20 to 28 percent and the advent of carbon peaking could shift from 2040 to 2030. In addition, the effect of electrification at end-use sectors is studied. Results show that electrifying transport could reduce emissions and bring the advent of carbon peaking forward, but the effect is less significant compared with low-carbon technologies. Moreover, it implies the importance of decarbonizing power supply before electrifying end-use sectors.

Suggested Citation

  • Zheng Guo & Pei Liu & Linwei Ma & Zheng Li, 2015. "Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050," Energies, MDPI, vol. 8(7), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7161-7184:d:52622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/7161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/7161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
    2. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    3. Lingying Pan & Zheng Guo & Pei Liu & Linwei Ma & Zheng Li, 2013. "Comparison and Analysis of Macro Energy Scenarios in China and a Decomposition-Based Approach to Quantifying the Impacts of Economic and Social Development," Energies, MDPI, vol. 6(7), pages 1-22, July.
    4. Wu, Libo & Huo, Hong, 2014. "Energy efficiency achievements in China׳s industrial and transport sectors: How do they rate?," Energy Policy, Elsevier, vol. 73(C), pages 38-46.
    5. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    6. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
    7. Jean Château & Cuauhtemoc Rebolledo & Rob Dellink, 2011. "An Economic Projection to 2050: The OECD "ENV-Linkages" Model Baseline," OECD Environment Working Papers 41, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Yongna & Duan, Hongbo & Tsvetanov, Tsvetan G., 2020. "Synergizing China's energy and carbon mitigation goals: General equilibrium modeling and policy assessment," Energy Economics, Elsevier, vol. 89(C).
    2. Yang, Tianqi & Shu, Yun & Zhang, Shaohui & Wang, Hongchang & Zhu, Jinwei & Wang, Fan, 2023. "Impacts of end-use electrification on air quality and CO2 emissions in China's northern cities in 2030," Energy, Elsevier, vol. 278(PA).
    3. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    4. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    5. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    2. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    3. Khanna, Nina Zheng & Zhou, Nan & Fridley, David & Ke, Jing, 2016. "Quantifying the potential impacts of China's power-sector policies on coal input and CO2 emissions through 2050: A bottom-up perspective," Utilities Policy, Elsevier, vol. 41(C), pages 128-138.
    4. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Craig Garthwaite & Tal Gross & Matthew J. Notowidigdo, 2014. "Public Health Insurance, Labor Supply, and Employment Lock," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(2), pages 653-696.
    6. Tarek Roshdy Gebba & Mohamed Gamal Aboelmaged, 2016. "Corporate Governance of UAE Financial Institutions: A Comparative Study between Conventional and Islamic Banks," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(5), pages 1-7.
    7. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    8. Clarete, Ramon L. & Villamil, Isabela Rosario G., 2015. "Readiness of the Philippine Agriculture and Fisheries Sectors for the 2015 ASEAN Economic Community: A Rapid Appraisal," Research Paper Series DP 2015-43, Philippine Institute for Development Studies.
    9. Alleyne, Dillon & Emanuel, Elizabeth & Phillips, Willard, 2013. "An assessment of fiscal and regulatory barriers to the deployment of energy efficiency and renewable energy technologies in Saint Lucia," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38502, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    10. Cristian Pana, 2013. "The National Central Bank’S Management Of Reserve Requirements," Working papers 16, Ecological University of Bucharest, Department of Economics.
    11. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. McMahon, Rob, 2020. "Co-developing digital inclusion policy and programming with indigenous partners: Interventions from Canada," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 9(2), pages 1-26.
    13. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    14. John V. Duca, 2013. "Regionally, Housing Rebound Depends on Jobs, Local Supply Tightness," Annual Report, Federal Reserve Bank of Dallas.
    15. Divya Ravindranath, 2017. "Visa regulations and labour market restrictions: implications for Indian immigrant women in the United States," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 60(2), pages 217-232, June.
    16. LametK.Maika & Kevin Wachira, 2020. "Effects of organizational culture on strategy implementation in water boards in Kenya," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 9(4), pages 15-28, July.
    17. Kanbayashi, Yoji., 2015. "The situation of non-regular public employees in Japan," ILO Working Papers 994861763402676, International Labour Organization.
    18. Jose Cuesta & Jon Jellema & Lucia Ferrone, 2021. "Fiscal Policy, Multidimensional Poverty, and Equity in Uganda: A Child-Lens Analysis," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(3), pages 427-458, June.
    19. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    20. Zhang, Zibin & Yang, Wenxin & Ye, Jianliang, 2021. "Why sulfur dioxide emissions decline significantly from coal-fired power plants in China? Evidence from the desulfurated electricity pricing premium program," Energy Policy, Elsevier, vol. 148(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7161-7184:d:52622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.