IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p7100-7121d52533.html
   My bibliography  Save this article

Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms

Author

Listed:
  • Xiaohong Ran

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shihong Miao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yingjie Wu

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

With the advance of insulated gate bipolar transistor (IGBT) converters, Multi-Terminal DC (MTDC) based on the voltage-source converter (VSC) has developed rapidly in renewable and electric power systems. To reduce the copper loss of large capacity and long distance DC transmission line, an improved droop control design based on optimal power sharing in VSC-MTDC integrating offshore wind farm is proposed. The proposed approach provided a calculation method for power-voltage droop coefficients under two different scenarios either considering local load or not. The available headroom of each converter station was considered as a converter outage, to participate in the power adjustment according to their ability. A four-terminal MTDC model system including two large scale wind farms was set up in PSCAD/EMTDC. Then, the proposed control strategy was verified through simulation under the various conditions, including wind speed variation, rectifier outage and inverter outage, and a three-phase short-circuit of the converter.

Suggested Citation

  • Xiaohong Ran & Shihong Miao & Yingjie Wu, 2015. "Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms," Energies, MDPI, vol. 8(7), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7100-7121:d:52533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/7100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/7100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Ludois & Giri Venkataramanan, 2010. "An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid," Energies, MDPI, vol. 3(6), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdi Shahparasti & Pedro Catalán & Nurul Fazlin Roslan & Joan Rocabert & Raúl-Santiago Muñoz-Aguilar & Alvaro Luna, 2018. "Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions," Energies, MDPI, vol. 11(3), pages 1-21, February.
    2. Bianchi, Fernando D. & Domínguez-García, José Luis & Gomis-Bellmunt, Oriol, 2016. "Control of multi-terminal HVDC networks towards wind power integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1055-1068.
    3. Jaehong Kim & Jitae Hong & Hongju Kim, 2016. "Improved Direct Deadbeat Voltage Control with an Actively Damped Inductor-Capacitor Plant Model in an Islanded AC Microgrid," Energies, MDPI, vol. 9(11), pages 1-15, November.
    4. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jikai Chen & Yanhui Dou & Yang Li & Jiang Li & Guoqing Li, 2016. "A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion," Energies, MDPI, vol. 10(1), pages 1-20, December.
    2. Rodrigo Teixeira Pinto & Sílvio Fragoso Rodrigues & Edwin Wiggelinkhuizen & Ricardo Scherrer & Pavol Bauer & Jan Pierik, 2012. "Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms," Energies, MDPI, vol. 6(1), pages 1-26, December.
    3. Javier Solano & Diego Jimenez & Adrian Ilinca, 2020. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids," Energies, MDPI, vol. 13(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7100-7121:d:52533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.