IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p6427-6450d51679.html
   My bibliography  Save this article

Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues

Author

Listed:
  • Alon Kuperman

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Moshe Sitbon

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Shlomo Gadelovits

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Moshe Averbukh

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Teuvo Suntio

    (Department of Electrical Engineering, Tampere University of Technology, Tampere FI-33101, Finland)

Abstract

In this paper, dynamic analysis of a multi-battery dual mode charger, powered by a single solar array and suitable for lead-acid and lithium-ion cell-based batteries is presented. Each battery is interfaced to the solar array by means of a current-controlled buck power stage, operating either in constant power or constant voltage mode. Operation in former/latter charging mode implies regulating input/output voltage of the converter, which is a non-trivial situation since while feeding different batteries, all the converters share the same input terminals, connected to the solar array. It is revealed that when at least one of the batteries operates in constant power charging mode, open-loop instability occurs whenever converter input voltage is lower than maximum power point voltage of the solar array. Consequently, input voltage regulating controller must be designed to stabilize closed-loop dynamics for the worst case of instability, which is also derived. Moreover, it is shown that the dynamics of the converters operating under output voltage control are perceived as disturbances by input voltage control loop and must be properly rejected. Simple loop shaping design is proposed based on a PI controller, allowing stabilizing the system in case of worst case instability and rejecting output voltage control induced disturbances at the expense of non-constant, operating-point dependent closed-loop damping.

Suggested Citation

  • Alon Kuperman & Moshe Sitbon & Shlomo Gadelovits & Moshe Averbukh & Teuvo Suntio, 2015. "Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues," Energies, MDPI, vol. 8(7), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6427-6450:d:51679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/6427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/6427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    2. Gadelovits, Shlomo & Kuperman, Alon & Sitbon, Moshe & Aharon, Ilan & Singer, Sigmond, 2014. "Interfacing renewable energy sources for maximum power transfer—Part I: Statics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 501-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    2. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    3. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    4. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    5. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    6. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    7. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    8. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    9. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    10. Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
    11. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.
    12. Sergei Kolesnik & Alon Kuperman, 2017. "Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators," Energies, MDPI, vol. 10(10), pages 1-6, September.
    13. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    14. Sigmund Singer & Shlomi Efrati & Meir Alon & Doron Shmilovitz, 2021. "Maximum Electrical Power Extraction from Sources by Load Matching," Energies, MDPI, vol. 14(23), pages 1-19, December.
    15. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    16. Pushpakaran, Bejoy N. & Subburaj, Anitha Sarah & Bayne, Stephen B. & Mookken, John, 2016. "Impact of silicon carbide semiconductor technology in Photovoltaic Energy System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 971-989.
    17. Wenjing Lei & Qing He & Liu Yang & Hongzan Jiao, 2022. "Solar Photovoltaic Cell Parameter Identification Based on Improved Honey Badger Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    18. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    19. Kichou, Sofiane & Silvestre, Santiago & Guglielminotti, Letizia & Mora-López, Llanos & Muñoz-Cerón, Emilio, 2016. "Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification," Renewable Energy, Elsevier, vol. 99(C), pages 270-279.
    20. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6427-6450:d:51679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.