IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p1505-1528d45992.html
   My bibliography  Save this article

Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction

Author

Listed:
  • Changbin Hu

    (College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
    Inverter Technologies Engineering Research Center of Beijing, Beijing 100144, China)

  • Shanna Luo

    (College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
    Inverter Technologies Engineering Research Center of Beijing, Beijing 100144, China)

  • Zhengxi Li

    (College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
    Inverter Technologies Engineering Research Center of Beijing, Beijing 100144, China)

  • Xin Wang

    (College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
    Inverter Technologies Engineering Research Center of Beijing, Beijing 100144, China)

  • Li Sun

    (College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100144, China)

Abstract

According to the topological structure of wind-storage-load complementation microgrids, this paper proposes a method for energy coordinative optimization which focuses on improvement of the economic benefits of microgrids in the prediction framework. First of all, the external characteristic mathematical model of distributed generation (DG) units including wind turbines and storage batteries are established according to the requirements of the actual constraints. Meanwhile, using the minimum consumption costs from the external grid as the objective function, a grey prediction model with residual modification is introduced to output the predictive wind turbine power and load at specific periods. Second, based on the basic framework of receding horizon optimization, an intelligent genetic algorithm (GA) is applied to figure out the optimum solution in the predictive horizon for the complex non-linear coordination control model of microgrids. The optimum results of the GA are compared with the receding solution of mixed integer linear programming (MILP). The obtained results show that the method is a viable approach for energy coordinative optimization of microgrid systems for energy flow and reasonable schedule. The effectiveness and feasibility of the proposed method is verified by examples.

Suggested Citation

  • Changbin Hu & Shanna Luo & Zhengxi Li & Xin Wang & Li Sun, 2015. "Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction," Energies, MDPI, vol. 8(2), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1505-1528:d:45992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/1505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/1505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalid, M. & Savkin, A.V., 2014. "Minimization and control of battery energy storage for wind power smoothing: Aggregated, distributed and semi-distributed storage," Renewable Energy, Elsevier, vol. 64(C), pages 105-112.
    2. Paiva, J.E. & Carvalho, A.S., 2013. "Controllable hybrid power system based on renewable energy sources for modern electrical grids," Renewable Energy, Elsevier, vol. 53(C), pages 271-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Hu & Nan Wang & Zaiming Yu & Yunqing Cao & Dongsheng Yang & Li Sun, 2021. "Optimal Operation of Multiple Energy System Based on Multi-Objective Theory and Grey Theory," Energies, MDPI, vol. 15(1), pages 1-21, December.
    2. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Alberto Dolara & Francesco Grimaccia & Giulia Magistrati & Gabriele Marchegiani, 2017. "Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming," Energies, MDPI, vol. 10(2), pages 1-20, February.
    4. Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
    5. Ha-Lim Lee & Yeong-Han Chun, 2018. "Using Piecewise Linearization Method to PCS Input/Output-Efficiency Curve for a Stand-Alone Microgrid Unit Commitment," Energies, MDPI, vol. 11(9), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saher Javaid & Mineo Kaneko & Yasuo Tan, 2021. "Safe Operation Conditions of Electrical Power System Considering Power Balanceability among Power Generators, Loads, and Storage Devices," Energies, MDPI, vol. 14(15), pages 1-27, July.
    2. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    3. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    4. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    5. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    6. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    7. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    8. Santiago Arnaltes & Jose Luis Rodriguez-Amenedo & Miguel E. Montilla-DJesus, 2017. "Control of Variable Speed Wind Turbines with Doubly Fed Asynchronous Generators for Stand-Alone Applications," Energies, MDPI, vol. 11(1), pages 1-16, December.
    9. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    10. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    11. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    12. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    13. Arul, P.G. & Ramachandaramurthy, Vigna K. & Rajkumar, R.K., 2015. "Control strategies for a hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 597-608.
    14. Zhao, Pan & Wang, Mingkun & Wang, Jiangfeng & Dai, Yiping, 2015. "A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application," Energy, Elsevier, vol. 84(C), pages 825-839.
    15. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    16. Francesc Girbau-LListuella & Francisco Díaz-González & Andreas Sumper, 2017. "Optimization of the Operation of Smart Rural Grids through a Novel Energy Management System," Energies, MDPI, vol. 11(1), pages 1-28, December.
    17. Khalid, Muhammad & Aguilera, Ricardo P. & Savkin, Andrey V. & Agelidis, Vassilios G., 2018. "On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting," Applied Energy, Elsevier, vol. 211(C), pages 764-773.
    18. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    19. Dillon, Trent & Maurer, Benjamin & Lawson, Michael & Polagye, Brian, 2024. "Forecast-based stochastic optimization for a load powered by wave energy," Renewable Energy, Elsevier, vol. 226(C).
    20. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1505-1528:d:45992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.