IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p11404-11429d57020.html
   My bibliography  Save this article

Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia

Author

Listed:
  • Stefan Lechtenböhmer

    (Wuppertal Institute for Climate, Energy and Environment, Döppersberg 19, 42103 Wuppertal, Germany)

  • Clemens Schneider

    (Wuppertal Institute for Climate, Energy and Environment, Döppersberg 19, 42103 Wuppertal, Germany
    These authors contributed equally to this work.)

  • María Yetano Roche

    (Wuppertal Institute for Climate, Energy and Environment, Döppersberg 19, 42103 Wuppertal, Germany
    These authors contributed equally to this work.)

  • Samuel Höller

    (Umweltbundesamt, Deutsche Emissionshandelsstelle (DEHSt), Bismarckplatz 1, 14193 Berlin, Germany
    These authors contributed equally to this work.)

Abstract

The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO 2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of “re-industrialisation” for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO 2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry—such as electrification, hydrogen-based processes for steel, alternative cements or CCS—if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.

Suggested Citation

  • Stefan Lechtenböhmer & Clemens Schneider & María Yetano Roche & Samuel Höller, 2015. "Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia," Energies, MDPI, vol. 8(10), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11404-11429:d:57020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/11404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/11404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    2. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    3. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    4. Stefan Kruger Nielsen & Kenneth Karlsson, 2007. "Energy scenarios: a review of methods, uses and suggestions for improvement," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(3), pages 302-322.
    5. Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
    6. Brandt, Patric & Ernst, Anna & Gralla, Fabienne & Luederitz, Christopher & Lang, Daniel J. & Newig, Jens & Reinert, Florian & Abson, David J. & von Wehrden, Henrik, 2013. "A review of transdisciplinary research in sustainability science," Ecological Economics, Elsevier, vol. 92(C), pages 1-15.
    7. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    8. Mathy, Sandrine & Fink, Meike & Bibas, Ruben, 2015. "Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France," Energy Policy, Elsevier, vol. 77(C), pages 176-190.
    9. Jönsson, Johanna & Berntsson, Thore, 2012. "Analysing the potential for implementation of CCS within the European pulp and paper industry," Energy, Elsevier, vol. 44(1), pages 641-648.
    10. Schmid, Eva & Knopf, Brigitte, 2012. "Ambitious mitigation scenarios for Germany: A participatory approach," Energy Policy, Elsevier, vol. 51(C), pages 662-672.
    11. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesseling, Joeri H. & van der Vooren , Alexander, 2016. "Lock-in of mature innovation systems, The transformation toward clean concrete in the Netherlands," Papers in Innovation Studies 2016/17, Lund University, CIRCLE - Centre for Innovation Research.
    2. Jason Moore & Bahman Shabani, 2016. "A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies," Energies, MDPI, vol. 9(9), pages 1-28, August.
    3. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    4. Stefano Barberis & Simone Maccarini & Syed Safeer Mehdi Shamsi & Alberto Traverso, 2023. "Untapping Industrial Flexibility via Waste Heat-Driven Pumped Thermal Energy Storage Systems," Energies, MDPI, vol. 16(17), pages 1-24, August.
    5. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    6. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    7. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    8. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steve Pye & Chris Bataille, 2016. "Improving deep decarbonization modelling capacity for developed and developing country contexts," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 27-46, June.
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    4. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    5. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    6. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    7. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.
    8. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    9. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    10. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    11. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    12. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    13. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    14. Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
    15. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.
    16. de la Rue du Can, Stephane & Khandekar, Aditya & Abhyankar, Nikit & Phadke, Amol & Khanna, Nina Zheng & Fridley, David & Zhou, Nan, 2019. "Modeling India’s energy future using a bottom-up approach," Applied Energy, Elsevier, vol. 238(C), pages 1108-1125.
    17. McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "Participatory methods in energy system modelling and planning – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Deger Saygin & Dolf Gielen, 2021. "Zero-Emission Pathway for the Global Chemical and Petrochemical Sector," Energies, MDPI, vol. 14(13), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11404-11429:d:57020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.