IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i7p3323-3338d26966.html
   My bibliography  Save this article

An Analysis of Variable-Speed Wind Turbine Power-Control Methods with Fluctuating Wind Speed

Author

Listed:
  • Yun-Su Kim

    (School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Korea)

  • Il-Yop Chung

    (School of Electrical Engineering, Kookmin University, Seoul 136-702, Korea)

  • Seung-Il Moon

    (School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Korea)

Abstract

Variable-speed wind turbines (VSWTs) typically use a maximum power-point tracking (MPPT) method to optimize wind-energy acquisition. MPPT can be implemented by regulating the rotor speed or by adjusting the active power. The former, termed speed-control mode (SCM), employs a speed controller to regulate the rotor, while the latter, termed power-control mode (PCM), uses an active power controller to optimize the power. They are fundamentally equivalent; however, since they use a different controller at the outer control loop of the machine-side converter (MSC) controller, the time dependence of the control system differs depending on whether SCM or PCM is used. We have compared and analyzed the power quality and the power coefficient when these two different control modes were used in fluctuating wind speeds through computer simulations. The contrast between the two methods was larger when the wind-speed fluctuations were greater. Furthermore, we found that SCM was preferable to PCM in terms of the power coefficient, but PCM was superior in terms of power quality and system stability.

Suggested Citation

  • Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2013. "An Analysis of Variable-Speed Wind Turbine Power-Control Methods with Fluctuating Wind Speed," Energies, MDPI, vol. 6(7), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3323-3338:d:26966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/7/3323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/7/3323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Llorente Iglesias, Rosario & Lacal Arantegui, Roberto & Aguado Alonso, Mónica, 2011. "Power electronics evolution in wind turbines—A market-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4982-4993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    2. Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds," Energies, MDPI, vol. 8(2), pages 1-20, February.
    3. Zhiqiang Yang & Minghui Yin & Yan Xu & Zhengyang Zhang & Yun Zou & Zhao Yang Dong, 2016. "A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades," Energies, MDPI, vol. 9(6), pages 1-16, May.
    4. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.
    5. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    2. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    3. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    4. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    5. Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds," Energies, MDPI, vol. 8(2), pages 1-20, February.
    6. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    7. Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
    8. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Ye, Yida & Qiao, Ying & Lu, Zongxiang, 2019. "Revolution of frequency regulation in the converter-dominated power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 145-156.
    10. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    11. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    12. Ghanbari, T. & Farjah, E. & Naseri, F. & Tashakor, N. & Givi, H. & Khayam, R., 2018. "Solid-State Capacitor Switching Transient Limiter based on Kalman Filter algorithm for mitigation of capacitor bank switching transients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1069-1081.
    13. Zhao, Zhen-yu & Yan, Hong & Zuo, Jian & Tian, Yu-xi & Zillante, George, 2013. "A critical review of factors affecting the wind power generation industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 499-508.
    14. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    15. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3323-3338:d:26966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.