IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i9p3363-3380d19897.html
   My bibliography  Save this article

A Method for Identification of Driving Patterns in Hybrid Electric Vehicles Based on a LVQ Neural Network

Author

Listed:
  • Hongwen He

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Chao Sun

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Xiaowei Zhang

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Driving patterns exert an important influence on the fuel economy of vehicles, especially hybrid electric vehicles. This paper aims to build a method to identify driving patterns with enough accuracy and less sampling time compared than other driving pattern recognition algorithms. Firstly a driving pattern identifier based on a Learning Vector Quantization neural network is established to analyze six selected representative standard driving cycles. Micro-trip extraction and Principal Component Analysis methods are applied to ensure the magnitude and diversity of the training samples. Then via Matlab/Simulink, sample training simulation is conducted to determine the minimum neuron number of the Learning Vector Quantization neural network and, as a result, to help simplify the identifier model structure and reduce the data convergence time. Simulation results have proved the feasibility of this method, which decreases the sampling window length from about 250–300 s to 120 s with an acceptable accuracy. The driving pattern identifier is further used in an optimized co-simulation together with a parallel hybrid vehicle model and improves the fuel economy by about 8%.

Suggested Citation

  • Hongwen He & Chao Sun & Xiaowei Zhang, 2012. "A Method for Identification of Driving Patterns in Hybrid Electric Vehicles Based on a LVQ Neural Network," Energies, MDPI, vol. 5(9), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3363-3380:d:19897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/9/3363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/9/3363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelsalam Ahmed Abdelsalam & Shumei Cui, 2012. "A Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles Based on a Permanent Magnet Electric Variable Transmission," Energies, MDPI, vol. 5(4), pages 1-24, April.
    2. Hongwen He & Zhentong Liu & Liming Zhu & Xinlei Liu, 2012. "Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle," Energies, MDPI, vol. 5(8), pages 1-16, August.
    3. M. Montazeri-Gh & M. Asadi, 2011. "Intelligent approach for parallel HEV control strategy based on driving cycles," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(2), pages 287-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2022. "Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine," Energies, MDPI, vol. 15(12), pages 1-22, June.
    2. Jau-Woei Perng & Yi-Horng Lai, 2016. "Robust Longitudinal Speed Control of Hybrid Electric Vehicles with a Two-Degree-of-Freedom Fuzzy Logic Controller," Energies, MDPI, vol. 9(4), pages 1-15, April.
    3. Xiao Hu & Shikun Liu & Ke Song & Yuan Gao & Tong Zhang, 2021. "Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health," Energies, MDPI, vol. 14(20), pages 1-20, October.
    4. Qiao Zhang & Weiwen Deng, 2016. "An Adaptive Energy Management System for Electric Vehicles Based on Driving Cycle Identification and Wavelet Transform," Energies, MDPI, vol. 9(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiwei Xu & Jing Sun & Lingyan Luo & Shumei Cui & Qianfan Zhang, 2016. "A Study on Magnetic Decoupling of Compound-Structure Permanent-Magnet Motor for HEVs Application," Energies, MDPI, vol. 9(10), pages 1-16, October.
    2. Ming Ye & Yitao Long & Yi Sui & Yonggang Liu & Qiao Li, 2019. "Active Control and Validation of the Electric Vehicle Powertrain System Using the Vehicle Cluster Environment," Energies, MDPI, vol. 12(19), pages 1-21, September.
    3. Hongqiang Guo & Hongwen He & Fengchun Sun, 2013. "A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle," Energies, MDPI, vol. 6(12), pages 1-21, December.
    4. Jianjun Hu & Lingling Zheng & Meixia Jia & Yi Zhang & Tao Pang, 2018. "Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle," Energies, MDPI, vol. 11(4), pages 1-14, March.
    5. Andrea Bonfiglio & Damiano Lanzarotto & Mario Marchesoni & Massimiliano Passalacqua & Renato Procopio & Matteo Repetto, 2017. "Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 10(12), pages 1-17, December.
    6. Jixiang Fan & Jiangyan Zhang & Tielong Shen, 2015. "Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles," Energies, MDPI, vol. 8(9), pages 1-23, September.
    7. Chun-Liang Liu & Yi-Shun Chiu & Yi-Hua Liu & Yeh-Hsiang Ho & Shu-Syuan Huang, 2013. "Optimization of a Fuzzy-Logic-Control-Based Five-Stage Battery Charger Using a Fuzzy-Based Taguchi Method," Energies, MDPI, vol. 6(7), pages 1-20, July.
    8. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    9. Wang, Zhenzhen & Zhou, Jun & Rizzoni, Giorgio, 2022. "A review of architectures and control strategies of dual-motor coupling powertrain systems for battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Javier Solano & Diego Jimenez & Adrian Ilinca, 2020. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids," Energies, MDPI, vol. 13(16), pages 1-23, August.
    11. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3363-3380:d:19897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.