IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1421-d1611317.html
   My bibliography  Save this article

Climate Neutrality Strategies for the Chemical Industry Using a Novel Carbon Boundary: An Austrian Case Study

Author

Listed:
  • Maedeh Rahnama Mobarakeh

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Thomas Kienberger

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

Abstract

The chemical industry is a key driver of economic growth and innovation but remains one of the largest contributors to greenhouse gas (GHG) emissions. Achieving sustainability demands advancements in green chemistry and cleaner production methods. This study investigates emission reduction strategies across Scope 1, Scope 2, and Scope 3 by applying both top-down and bottom-up approaches within four system boundaries. The Austrian chemical sector, with a focus on ammonia, methanol, and olefins, serves as a case study. Results highlight the potential of abatement technologies and alternative feedstocks—such as low-carbon hydrogen and methanol—to significantly reduce emissions. Hydrogen-based production for ammonia and methanol, along with low-carbon methanol in olefin production, could reduce Scope 1 and Scope 2 emissions by approximately 80% compared to conventional methods. However, Scope 3 emissions remain challenging due to embedded carbon in feedstocks and CO 2 use in production, particularly in product use and end-of-life phases. A comprehensive life cycle assessment is crucial to addressing these impacts. To evaluate Scope 3 emissions, this study explores three decarbonization scenarios: the reference scenario—relies on fossil-based production with high emissions; the geogenic scenario—integrates abatement technologies and geogenic CO 2 feedstock, reducing emissions by about 46%; and the bio-based scenario—combines abatement technologies with biogenic CO 2 feedstock, achieving an 80% reduction in total emissions at the national level. The findings emphasize the need for a system-wide approach that integrates bio-based solutions and circular economy strategies to achieve climate neutrality. However, uncertainties in climate policy, bio-resource availability, and data gaps in Scope 3 emissions must be addressed to ensure effective decarbonization and alignment with climate goals.

Suggested Citation

  • Maedeh Rahnama Mobarakeh & Thomas Kienberger, 2025. "Climate Neutrality Strategies for the Chemical Industry Using a Novel Carbon Boundary: An Austrian Case Study," Energies, MDPI, vol. 18(6), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1421-:d:1611317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    2. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    3. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    2. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    3. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    4. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    5. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    6. Mohammad Sheikh Hassani & José C. Matos & Yixia Zhang & Elisabete R. Teixeira, 2023. "Green Concrete with Glass Powder—A Literature Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    7. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    8. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).
    9. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    10. Satyendra Nath Chakrabartty & Deepankar Sinha, 2024. "Assessing Direction of India’s Exports: A Dynamic Framework," Journal of Asian Economic Integration, , vol. 6(1), pages 63-89, April.
    11. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
    12. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    13. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    14. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    15. Norman Hendrik Riedel & Miroslav Špaček, 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    16. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    17. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.
    18. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).
    19. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1421-:d:1611317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.