IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p898-d1590274.html
   My bibliography  Save this article

Economic and Technological Challenges in Zero-Emission Strategies for Energy Companies

Author

Listed:
  • Piotr F. Borowski

    (Nicolaus Copernicus Superior School, College of Economics and Management, 47a Nowogrodzka St., 00-695 Warsaw, Poland
    Department of Economics and Management, Khazar University, 41 Mahsati Str., Baku AZ1096, Azerbaijan)

Abstract

The energy transition requires substantial financial investments and the adoption of innovative technological solutions. The aim of this paper is to analyze the economic and technological aspects of implementing zero-emission strategies as a key component of the transition toward a carbon-neutral economy. The study assesses the costs, benefits, and challenges of these strategies, with a particular focus on wind farms and nuclear power, including small modular reactors (SMRs). The paper presents an in-depth examination of key examples, including onshore and offshore wind farms, as well as nuclear energy from both large-scale and small modular reactors. It highlights their construction and operating costs, associated benefits, and challenges. The investment required to generate 1 MW of energy varies significantly depending on the technology: onshore wind farms range from $1,300,000 to $2,100,000, offshore wind farms from $3,000,000 to $5,500,000, traditional nuclear power plants from $3,000,000 to $5,000,000, while small modular reactors (SMRs) require between $5,000,000 and $10,000,000 per MW. The discussion underscores the critical role of wind farms in diversifying renewable energy sources while addressing the high capital requirements and technical complexities of nuclear power, including both traditional large-scale reactors and emerging SMRs. By evaluating these energy solutions, the article contributes to a broader understanding of the economic and technological challenges essential for advancing a sustainable energy future.

Suggested Citation

  • Piotr F. Borowski, 2025. "Economic and Technological Challenges in Zero-Emission Strategies for Energy Companies," Energies, MDPI, vol. 18(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:898-:d:1590274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    2. Lin, Boqiang & Zhang, Aoxiang, 2024. "Digital finance, regional innovation environment and renewable energy technology innovation: Threshold effects," Renewable Energy, Elsevier, vol. 223(C).
    3. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    4. Arkadiusz Sułek & Piotr F. Borowski, 2024. "Business Models on the Energy Market in the Era of a Low-Emission Economy," Energies, MDPI, vol. 17(13), pages 1-17, July.
    5. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    6. Piotr F. Borowski, 2024. "Innovative Solutions for the Future Development of the Energy Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 297-307.
    7. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    8. Asuega, Anthony & Limb, Braden J. & Quinn, Jason C., 2023. "Techno-economic analysis of advanced small modular nuclear reactors," Applied Energy, Elsevier, vol. 334(C).
    9. Behera, Puspanjali & Behera, Biswanath & Sethi, Narayan, 2024. "Assessing the impact of fiscal decentralization, green finance and green technology innovation on renewable energy use in European Union countries: What is the moderating role of political risk?," Renewable Energy, Elsevier, vol. 229(C).
    10. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    11. Alola, Andrew Adewale & Rahko, Jaana, 2024. "The effects of environmental innovations and international technology spillovers on industrial and energy sector emissions – Evidence from small open economies," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    12. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    2. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    3. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    4. Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).
    5. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    6. Liu, Jiamin & Zhang, Jiaoning & Ma, Xiaoyu & Zhao, Bin & Zhang, Mengyu, 2024. "The road to sustainable development: Can the new energy demonstration city policy promote the industrial structure transformation?," Renewable Energy, Elsevier, vol. 237(PB).
    7. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    8. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    9. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    10. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    11. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    12. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    13. Pratik Mochi & Kartik Pandya & Joao Soares & Zita Vale, 2023. "Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    14. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    15. N. Thangaiyarkarasi & S. Vanitha, 2021. "The Impact of Financial Development on Decarbonization Factors of Carbon Emissions: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 353-364.
    16. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    17. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    18. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    19. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    20. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:898-:d:1590274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.