IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p891-d1590177.html
   My bibliography  Save this article

Heatmaps to Guide Siting of Solar and Wind Farms

Author

Listed:
  • Cheng Cheng

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • David Firnando Silalahi

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • Lucy Roberts

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • Anna Nadolny

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • Timothy Weber

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • Andrew Blakers

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

  • Kylie Catchpole

    (ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia)

Abstract

The decarbonization of the electricity system coupled with the electrification of transport, heat, and industry represents a practical and cost-effective approach to deep decarbonization. A key question is as follows: where to build new solar and wind farms? This study presents a cost-based approach to evaluate land parcels for solar and wind farm suitability using colour-coded heatmaps that visually depict favourable locations. An indicative cost of electricity is calculated and classified for each pixel by focusing on key factors including the resource availability, proximity to transmission infrastructure and load centres, and exclusion of sensitive areas. The proposed approach mitigates the subjectivity associated with traditional multi-criteria decision-making methods, in which both the selection of siting factors and the assignment of their associated weightings rely highly on the subjective judgements of experts. The methodology is applied to Australia, South Korea, and Indonesia, and the results show that proximity to high-voltage transmission and load centres is a key factor affecting site selection in Australia and Indonesia, while connection costs are less critical in South Korea due to its smaller land area and extensive infrastructure. The outcomes of this study, including heatmaps and detailed statistics, are made publicly available to provide both qualitative and quantitative information that allows comparisons between regions and within a region. This study aims to empower policymakers, developers, communities, and individual landholders to make informed decisions and, ultimately, to facilitate strategic renewable energy deployment and contribute to global decarbonization.

Suggested Citation

  • Cheng Cheng & David Firnando Silalahi & Lucy Roberts & Anna Nadolny & Timothy Weber & Andrew Blakers & Kylie Catchpole, 2025. "Heatmaps to Guide Siting of Solar and Wind Farms," Energies, MDPI, vol. 18(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:891-:d:1590177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    2. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    3. Langer, Jannis & Kwee, Zenlin & Zhou, Yilong & Isabella, Olindo & Ashqar, Ziad & Quist, Jaco & Praktiknjo, Aaron & Blok, Kornelis, 2023. "Geospatial analysis of Indonesia's bankable utility-scale solar PV potential using elements of project finance," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    2. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    3. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    4. Dimitra G. Vagiona, 2025. "The Use of Comparative Multi-Criteria Analysis Methods to Evaluate Criteria Weighting in Assessments of Onshore Wind Farm Projects," Energies, MDPI, vol. 18(4), pages 1-19, February.
    5. Ji, Ling & Li, Jiahui & Sun, Lijian & Wang, Shuai & Guo, Junhong & Xie, Yulei & Wang, Xander, 2024. "China's onshore wind energy potential in the context of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Sassi Rekik & Imed Khabbouchi & Souheil El Alimi, 2025. "A Spatial Analysis for Optimal Wind Site Selection from a Sustainable Supply-Chain-Management Perspective," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    7. Anne A. Gharaibeh & Deema A. Al-Shboul & Abdulla M. Al-Rawabdeh & Rasheed A. Jaradat, 2021. "Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization," Land, MDPI, vol. 10(5), pages 1-32, April.
    8. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    9. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    10. Nagababu, Garlapati & Puppala, Harish & Pritam, Kocherlakota & Kantipudi, MVV Prasad, 2022. "Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India," Energy, Elsevier, vol. 248(C).
    11. Maimó-Far, Aina & Homar, Víctor & Tantet, Alexis & Drobinski, Philippe, 2024. "The trade-off between socio-environmental awareness and renewable penetration targets in energy transition roadmaps," Applied Energy, Elsevier, vol. 355(C).
    12. Keroglou, I. & Tsoutsos, T., 2024. "Optimal siting of solar desalination plants in Crete, Greece employing a GIS/MCDM approach," Renewable Energy, Elsevier, vol. 224(C).
    13. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    14. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    15. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    16. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    17. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    18. Huibing Cheng & Shanshui Zheng & Jianghong Feng, 2022. "A Fuzzy Multi-Criteria Method for Sustainable Ferry Operator Selection: A Case Study," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    19. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    20. Javier Domínguez & Carlo Bellini & Ana María Martín & Luis F. Zarzalejo, 2024. "Optimizing Solar Potential Analysis in Cuba: A Methodology for High-Resolution Regional Mapping," Sustainability, MDPI, vol. 16(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:891-:d:1590177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.