IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p852-d1589007.html
   My bibliography  Save this article

Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient

Author

Listed:
  • Łukasz Warguła

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

  • Bartosz Wieczorek

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

  • Łukasz Gierz

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

  • Bolesław Karwat

    (Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The RED II Directive requires European Union member states to increase the share of renewable energy in the transport sector to at least 14% by 2030. In January 2024, Poland replaced E5 gasoline (95 octane) with E10, which contains up to 10% bioethanol derived from second-generation sources such as agricultural residues. The transition to E10 raises concerns about the ability of engine management systems to adapt to its different air–fuel ratio (AFR) requirements. The AFR for E10 (13.82) is 1.98% lower than for E5 (14.25) and 3.88% lower than for pure gasoline (14.7). Research conducted on a spark-ignition engine (with AFR regulation) using an exhaust gas analyzer demonstrated that during the combustion of E5 and E10 fuels with correctly adjusted AFR and operation at λ = 1, the use of E10 potentially increases CO 2 and NO x emissions despite reductions in CO and HC. However, when calibrated for E5 and operated with E10 fuel, an increase in CO 2 and HC concentrations in the exhaust gases is observed, along with a reduction in CO and NO x . This phenomenon is attributed to operation with lean mixtures, at λ = 1.02. This study investigates both the theoretical and experimental impact of this fuel transition. Fuel systems typically adjust engine operation based on exhaust gas analysis but cannot recognize fuel type, leading to incorrect λ values when the AFR differs from the ECU’s programming. Effective adaptation would require additional fuel composition sensors and editable ECU mappings. For older vehicles or small non-road engines, manual adjustments to injection or carburetor systems may be necessary.

Suggested Citation

  • Łukasz Warguła & Bartosz Wieczorek & Łukasz Gierz & Bolesław Karwat, 2025. "Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–F," Energies, MDPI, vol. 18(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:852-:d:1589007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gintaras Valeika & Jonas Matijošius & Olga Orynycz & Alfredas Rimkus & Artūras Kilikevičius & Karol Tucki, 2024. "Compression Ignition Internal Combustion Engine’s Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends," Energies, MDPI, vol. 17(1), pages 1-20, January.
    2. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    3. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    4. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    5. Tomasz Rokicki & Piotr Bórawski & András Szeberényi, 2023. "The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia," Energies, MDPI, vol. 16(18), pages 1-26, September.
    6. Michał Bembenek & Vasyl Melnyk & Bolesław Karwat & Tomasz Rokita & Mariia Hnyp & Yurii Mosora & Łukasz Warguła, 2024. "Study of the Technical and Operational Parameters of Injectors Using Biogas Fuel," Energies, MDPI, vol. 17(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    3. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    4. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    5. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    6. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    7. Jining Wang & Xuewei Zhao & Lei Wang, 2024. "Prediction of China’s Carbon Price Based on the Genetic Algorithm–Particle Swarm Optimization–Back Propagation Neural Network Model," Sustainability, MDPI, vol. 17(1), pages 1-18, December.
    8. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    9. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    11. Börjesson, Maria & Proost, Stef, 2024. "The costs and benefits of e-roads versus battery-only trucks when costs are uncertain," Working Papers 2024:3, Swedish National Road & Transport Research Institute (VTI).
    12. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    14. Georgios Giakoumakis & Dimitrios Sidiras, 2025. "Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies," Energies, MDPI, vol. 18(3), pages 1-41, January.
    15. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    16. Asif Raihan & Sadman Anjum Joarder & Tapan Sarker & Blanka Gosik & Dariusz Kusz & Grzegorz Zimon, 2024. "Renewable Energy in Nepal: Current State and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 395-407, November.
    17. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    18. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    19. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    20. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:852-:d:1589007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.