Author
Listed:
- Xiang Wang
(School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
- Yiyao Ru
(School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
- Huanyu Zhao
(Liaoning Provincial Key Laboratory of Aircraft Ice Protection, AVIC Aerodynamics Research Institute, Shenyang 110034, China)
- Zhengzhi Wang
(School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
Abstract
Wind turbines operating in high-altitude and cold regions are susceptible to icing phenomenon, which is a serious threat to the power generation efficiency and operational safety. On the basis of the current research on supercooled droplet icing, mixed-phase icing is investigated. Based on icing numerical simulations under mixed-phase conditions, the aerodynamic characteristics of wind turbine airfoils before and after icing are analyzed. The results indicate that as the icing thickness increases, the aerodynamic characteristics of the airfoil gradually deteriorate, with the lift decreasing by 40.2% and the drag increasing by 135.2%. The aerodynamic characteristics of airfoil after icing are analyzed under both glaze and rime ice conditions and compared to those of the clear airfoil. The results show that icing leads to a decrease in the lift coefficient and an increase in the drag coefficient of the airfoil. This deterioration is primarily due to the fact that icing causes premature separation of the airfoil airflow, and icing can cause obstruction at the leading edge, which leads to the formation of local vortices and a decline in aerodynamic performance. The effects of icing on the aerodynamic characteristics of wind turbine airfoils under glaze and rime ice conditions are compared, and the lift-to-drag ratio decreases by 87.9% under the glaze ice condition and by 62.4% under rime ice conditions. The results show that the effects of mixed-phase icing under glaze ice conditions has a more severe impact than under rime ice conditions.
Suggested Citation
Xiang Wang & Yiyao Ru & Huanyu Zhao & Zhengzhi Wang, 2025.
"Study on the Effect of Mixed-Phase Icing on the Aerodynamic Characteristics of Wind Turbine Airfoil,"
Energies, MDPI, vol. 18(3), pages 1-22, January.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:3:p:559-:d:1576682
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:559-:d:1576682. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.