IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p411-d1570048.html
   My bibliography  Save this article

Testing Method for Non-Isothermal Radial Wall Jets from Ceiling Diffusers Used in Building Ventilation

Author

Listed:
  • Maria Hurnik

    (Department of Heating, Ventilation and Dust Removal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

Abstract

Diffusers producing radial jets attached to the ceiling are most often used in ventilation and air conditioning systems. In building ventilation, the temperature of the jet supplying the air into the rooms is usually different to the surrounding air temperature. To save energy for air transportation during periods of low heat gains, the air flow should be reduced as low as possible, to about 20% of its nominal value. A significant decrease in the air flow supply in cooling mode may cause cold air dumping and, consequently, increase the risk of local discomfort due to drafts in the occupied zone. In this study, a method for assessing the effect of non-isothermality on the speed distribution of radial wall jets has been developed. The measured terminal speed isolines, W = 0.2 m/s, were compared with the isolines determined for isothermal jets. The test results have shown that, for radial wall jets supplying air at an Archimedes number higher than approximately 50 × 10 −4 , the risk of jet dumping is significant.

Suggested Citation

  • Maria Hurnik, 2025. "Testing Method for Non-Isothermal Radial Wall Jets from Ceiling Diffusers Used in Building Ventilation," Energies, MDPI, vol. 18(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:411-:d:1570048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    2. Nina Szczepanik-Scislo & Jacek Schnotale, 2020. "An Air Terminal Device with a Changing Geometry to Improve Indoor Air Quality for VAV Ventilation Systems," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Maria Hurnik & Jan Kaczmarczyk & Zbigniew Popiolek, 2021. "Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume," Energies, MDPI, vol. 14(1), pages 1-18, January.
    4. Weimin Wang & Jian Zhang & Michael R. Brambley & Benjamin Futrell, 2020. "Performance Simulation and Analysis of Occupancy-Based Control for Office Buildings with Variable-Air-Volume Systems," Energies, MDPI, vol. 13(15), pages 1-21, July.
    5. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    2. Mariusz Starzec & Sabina Kordana-Obuch & Beata Piotrowska, 2024. "Evaluation of the Suitability of Using Artificial Neural Networks in Assessing the Effectiveness of Greywater Heat Exchangers," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    3. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.
    4. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    5. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    6. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    7. Florin Ioan Bode & Titus Otniel Joldos & Gabriel Mihai Sirbu & Paul Danca & Costin Cosoiu & Ilinca Nastase, 2024. "Innovative High-Induction Air Diffuser for Enhanced Air Mixing in Vehicles and Personalized Ventilation Applications," Energies, MDPI, vol. 17(12), pages 1-17, June.
    8. Ling-Yi Chang & Tong-Bou Chang, 2023. "Air Conditioning Operation Strategies for Comfort and Indoor Air Quality in Taiwan’s Elementary Schools," Energies, MDPI, vol. 16(5), pages 1-19, March.
    9. Marek Borowski & Rafał Łuczak & Joanna Halibart & Klaudia Zwolińska & Michał Karch, 2021. "Airflow Fluctuation from Linear Diffusers in an Office Building: The Thermal Comfort Analysis," Energies, MDPI, vol. 14(16), pages 1-19, August.
    10. Mariusz Starzec & Sabina Kordana-Obuch, 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
    11. Paweł Szałański & Piotr Kowalski & Wojciech Cepiński & Piotr Kęskiewicz, 2023. "The Effect of Lowering Indoor Air Temperature on the Reduction in Energy Consumption and CO 2 Emission in Multifamily Buildings in Poland," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    12. Katarzyna Ratajczak & Edward Szczechowiak & Aneta Pobudkowska, 2023. "Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement," Energies, MDPI, vol. 16(16), pages 1-25, August.
    13. Zheng-Yu, Shu & Ying-Xi, Huang & Jian-Wei, He & Zhang, Wang & Hai-Tao, Wang & Shan-Xun, Sun & Yang, Cai & Fu-Yun, Zhao, 2024. "Functional ventilation building envelope integrated photovoltaic modules and phrase change material in subtropical climate: An in-depth numerical investigation," Energy, Elsevier, vol. 307(C).
    14. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    15. Mutaz Suleiman & Ahmed Elshaer & Muntasir Billah & Mohammed Bassuony, 2021. "Propagation of Mouth-Generated Aerosols in a Modularly Constructed Hospital Room," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    16. Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2024. "Harnessing Artificial Neural Networks for Financial Analysis of Investments in a Shower Heat Exchanger," Energies, MDPI, vol. 17(14), pages 1-24, July.
    17. Nina Szczepanik-Scislo, 2022. "Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace," IJERPH, MDPI, vol. 19(3), pages 1-11, February.
    18. Kaijun Li & Linye Song & Xinghui Zhang & Qi Wang & Jing Hua, 2023. "Study of Influence of Boundary Condition of Diffuser with Non-Uniform Velocity on the Jet Characteristics and Indoor Flow Field," Energies, MDPI, vol. 16(3), pages 1-17, January.
    19. Sabina Kordana-Obuch & Mariusz Starzec, 2023. "Experimental Development of the Horizontal Drain Water Heat Recovery Unit," Energies, MDPI, vol. 16(12), pages 1-24, June.
    20. Yat Huang Yau & Umair Ahmed Rajput & Altaf Hussain Rajpar & Natalia Lastovets, 2022. "Effects of Air Supply Terminal Devices on the Performance of Variable Refrigerant Flow Integrated Stratum Ventilation System: An Experimental Study," Energies, MDPI, vol. 15(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:411-:d:1570048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.