IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p269-d1563616.html
   My bibliography  Save this article

Enhancing Thermal Comfort in Historic Buildings by Wind-Driven Ventilation Systems—A Case Study of the Praterateliers in Vienna

Author

Listed:
  • Aida Shayegani

    (Institute of Urban Design and Urban Planning, Faculty of Architecture and Design, Slovak University of Technology in Bratislava, Namestie Slobody 19, 81245 Bratislava, Slovakia)

  • Viera Joklova

    (Institute of Urban Design and Urban Planning, Faculty of Architecture and Design, Slovak University of Technology in Bratislava, Namestie Slobody 19, 81245 Bratislava, Slovakia)

  • Katarina Kristianova

    (Center of Landscape Architecture, Faculty of Architecture and Design, Slovak University of Technology in Bratislava, Namestie Slobody 19, 81245 Bratislava, Slovakia)

  • Juraj Illes

    (Institute of Urban Design and Urban Planning, Faculty of Architecture and Design, Slovak University of Technology in Bratislava, Namestie Slobody 19, 81245 Bratislava, Slovakia)

Abstract

This study investigates the effectiveness of natural wind-driven ventilation systems in enhancing thermal comfort and energy efficiency within the context of Central European climates, specifically Vienna. By addressing the unique challenges posed by cultural heritage buildings, such as the Praterateliers’ Pavilions, this research highlights the role of sustainable ventilation strategies in mitigating urban overheating, which is exacerbated by climate change. A novel focus is placed on integrating windcatchers with passive systems like earth tubes and solar ventilation to reduce reliance on mechanical cooling and achieve lower carbon emissions while adhering to heritage preservation regulations. Using DesignBuilder simulations and future climate data (2020–2030), this research evaluates the thermal performance of key zones within the Praterateliers under different operational scenarios. The selected analysis period (May to September) captures the peak thermal stress conditions in Vienna, with wind rose diagrams and temperature characteristics providing insights into the ventilation potential during these months. The quantitative results demonstrate that cross-ventilation, combined with windcatchers and subterranean air exchange systems, improved thermal comfort metrics—such as predicted mean vote indices—by up to 30%, particularly in windward and leeward zones. These findings underscore the viability of non-invasive natural ventilation systems in achieving optimal thermal conditions, demonstrating an innovative yet preservation-friendly approach to sustainable architecture. This research not only advances the application of passive cooling strategies in heritage buildings but also provides scalable solutions for addressing urban overheating in modern constructions.

Suggested Citation

  • Aida Shayegani & Viera Joklova & Katarina Kristianova & Juraj Illes, 2025. "Enhancing Thermal Comfort in Historic Buildings by Wind-Driven Ventilation Systems—A Case Study of the Praterateliers in Vienna," Energies, MDPI, vol. 18(2), pages 1-38, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:269-:d:1563616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    2. Payam Nejat & Yashar Fekri & Mohammadamin Sheikhshahrokhdehkordi & Fatemeh Jomehzadeh & Hayder Alsaad & Conrad Voelker, 2024. "The Windcatcher: A Renewable-Energy-Powered Device for Natural Ventilation—The Impact of Upper Wing Walls," Energies, MDPI, vol. 17(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hala Sirror, 2024. "Innovative Approaches to Windcatcher Design: A Review on Balancing Tradition Sustainability and Modern Technologies for Enhanced Performance," Energies, MDPI, vol. 17(22), pages 1-27, November.
    2. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    3. Sung-Chin Chung & Yi-Pin Lin & Chun Yang & Chi-Ming Lai, 2019. "Natural Ventilation Effectiveness of Awning Windows in Restrooms in K-12 Public Schools," Energies, MDPI, vol. 12(12), pages 1-14, June.
    4. Farshad Amiraslani, 2021. "‘Environmental Impact Assessment’ in Drylands: Late Knowledge Penetration or a Deliberate Ignorance for Megaprojects?," World, MDPI, vol. 2(3), pages 1-5, July.
    5. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. María Nuria Sánchez & Emanuela Giancola & Eduardo Blanco & Silvia Soutullo & María José Suárez, 2019. "Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints," Energies, MDPI, vol. 13(1), pages 1-16, December.
    8. Jinghua Yu & Kangxin Leng & Feifei Wang & Hong Ye & Yongqiang Luo, 2020. "Simulation Study on Dynamic Thermal Performance of a New Ventilated Roof with Form-Stable PCM in Southern China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    9. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    10. Hessam Taherian & Robert W. Peters, 2023. "Advanced Active and Passive Methods in Residential Energy Efficiency," Energies, MDPI, vol. 16(9), pages 1-19, May.
    11. Murtaza Mohammadi & John Kaiser Calautit, 2019. "Numerical Investigation of the Wind and Thermal Conditions in Sky Gardens in High-Rise Buildings," Energies, MDPI, vol. 12(7), pages 1-33, April.
    12. Qingsong Ma & Guangwei Qian & Menghui Yu & Lingrui Li & Xindong Wei, 2024. "Performance of Windcatchers in Improving Indoor Air Quality, Thermal Comfort, and Energy Efficiency: A Review," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    13. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    14. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Miranda, Nicole D. & Renaldi, Renaldi & Khosla, Radhika & McCulloch, Malcolm D., 2021. "Bibliometric analysis and landscape of actors in passive cooling research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Halil Zafer Alibaba, 2018. "Heat and Air Flow Behavior of Naturally Ventilated Offices in a Mediterranean Climate," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    17. Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
    18. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    19. Momoka Nagasue & Haruka Kitagawa & Takashi Asawa & Tetsu Kubota, 2024. "A Systematic Review of Passive Cooling Methods in Hot and Humid Climates Using a Text Mining-Based Bibliometric Approach," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    20. Darrell B. Sonntag & Hanyong Jung & Royce P. Harline & Tyler C. Peterson & Selah E. Willis & Taylor R. Christensen & James D. Johnston, 2023. "Infiltration of Outdoor PM 2.5 Pollution into Homes with Evaporative Coolers in Utah County," Sustainability, MDPI, vol. 16(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:269-:d:1563616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.