IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p611-d1327501.html
   My bibliography  Save this article

The Windcatcher: A Renewable-Energy-Powered Device for Natural Ventilation—The Impact of Upper Wing Walls

Author

Listed:
  • Payam Nejat

    (Department of Building Physics, Bauhaus-University Weimar, 99423 Weimar, Germany)

  • Yashar Fekri

    (Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran 15614, Iran)

  • Mohammadamin Sheikhshahrokhdehkordi

    (Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Fatemeh Jomehzadeh

    (Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Skudai 81310, Malaysia)

  • Hayder Alsaad

    (Department of Building Physics, Bauhaus-University Weimar, 99423 Weimar, Germany)

  • Conrad Voelker

    (Department of Building Physics, Bauhaus-University Weimar, 99423 Weimar, Germany)

Abstract

In recent years, there has been increased interest in natural ventilation solutions as a means to achieve sustainable and energy-efficient building design. Windcatchers, ancient Middle Eastern architectural elements, have surfaced as viable passive cooling devices in modern architecture, thereby enhancing interior air quality and reducing the reliance on mechanical ventilation systems. Integrating upper wing walls (UWWs) is hypothesized to augment a windcatcher’s effectiveness by optimizing wind capture, air circulation, and thermal regulation. Therefore, this study aimed to explore the influence of incorporating a two-sided windcatcher with UWWs, with a particular emphasis on the effect of the UWW angle on ventilation performance within building spaces. To achieve this aim, a series of numerical simulations were conducted to assess the synergy between the windcatcher and the wing wall configuration with varying UWW angles and under varying wind speed conditions. As the first step of the research methodology, the CFD model was validated through a comparison between the numerical results and the experimental data. The findings showed good agreement between these methods. In the next phase, windcatchers with different UWW angles spanning the range of 0° to 90° were subjected to rigorous evaluation. The results revealed that the configuration with a 30° angle exhibited the optimal performance concerning critical ventilation parameters encompassing the airflow rate, air change rate, and mean age of air. Finally, the selected configuration underwent an evaluation under diverse wind speed conditions, which affirmed that even under low-wind-speed conditions, the windcatcher provides ventilation levels that align with the standard requirements.

Suggested Citation

  • Payam Nejat & Yashar Fekri & Mohammadamin Sheikhshahrokhdehkordi & Fatemeh Jomehzadeh & Hayder Alsaad & Conrad Voelker, 2024. "The Windcatcher: A Renewable-Energy-Powered Device for Natural Ventilation—The Impact of Upper Wing Walls," Energies, MDPI, vol. 17(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:611-:d:1327501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    2. Ashraf Balabel & Mamdooh Alwetaishi & Wageeh A. El-Askary & Hamza Fawzy, 2021. "Numerical Study on Natural Ventilation Characteristics of a Partial-Cylinder Opening for One-Sided-Windcatcher of Variable Air-Feeding Orientations in Taif, Saudi Arabia," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    3. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    4. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:611-:d:1327501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.