IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p220-d1561188.html
   My bibliography  Save this article

Fast Simulation of the Flow Field in a VAWT Wind Farm Using the Numerical Data Obtained by CFD Analysis for a Single Rotor

Author

Listed:
  • Yutaka Hara

    (Advanced Mechanical and Electronic System Research Center (AMES), Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan)

  • Md. Shameem Moral

    (Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan)

  • Aoi Ide

    (Department of Mechanical and Physical Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan)

  • Yoshifumi Jodai

    (Department of Mechanical Engineering, National Institute of Technology (KOSEN), Kagawa College, 355 Chokushi, Takamatsu 761-8058, Japan)

Abstract

The effects of an increase in output power owing to the close arrangement of vertical-axis wind turbines (VAWTs) are well known. With the ultimate goal of determining the optimal layout of a wind farm (WF) for VAWTs, this study proposes a new method for quickly calculating the flow field and power output of a virtual WF consisting of two-dimensional (2-D) miniature VAWT rotors. This new method constructs a flow field in a WF by superposing 2-D velocity numerical data around an isolated single VAWT obtained through a computational fluid dynamics (CFD) analysis. In the calculation process, the VAWTs were gradually increased one by one from the upstream side, and a calculation subroutine, in which the virtual upstream wind speed at each VAWT position was recalculated with the effects of other VAWTs, was repeated three times for each arrangement with a temporal number of VAWTs. This method includes the effects of the velocity gradient, secondary flow, and wake shift as models of turbine-to-turbine interaction. To verify the accuracy of the method, the VAWT rotor power outputs predicted by the proposed method for several types of rotor pairs, four-rotor tandem, and parallel arrangements were compared with the results of previous CFD analyses. This method was applied to four virtual WFs consisting of 16 miniature VAWTs. It was found that a layout consisting of two linear arrays of eight closely spaced VAWTs with wide spacing between the arrays yielded a significantly higher output than the other three layouts. The high-performance layout had fewer rotors in the wakes of the other rotors, and the induced flow speeds generated by the closely spaced VAWTs probably mutually enhanced their output power.

Suggested Citation

  • Yutaka Hara & Md. Shameem Moral & Aoi Ide & Yoshifumi Jodai, 2025. "Fast Simulation of the Flow Field in a VAWT Wind Farm Using the Numerical Data Obtained by CFD Analysis for a Single Rotor," Energies, MDPI, vol. 18(1), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:220-:d:1561188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    2. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    3. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    4. Davide Cazzaro & Gabriele Bedon & David Pisinger, 2023. "Vertical Axis Wind Turbine Layout Optimization," Energies, MDPI, vol. 16(6), pages 1-16, March.
    5. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    6. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
    7. Wagner, Markus & Day, Jareth & Neumann, Frank, 2013. "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 64-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    2. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    3. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Jirarote Buranarote & Yutaka Hara & Masaru Furukawa & Yoshifumi Jodai, 2022. "Method to Predict Outputs of Two-Dimensional VAWT Rotors by Using Wake Model Mimicking the CFD-Created Flow Field," Energies, MDPI, vol. 15(14), pages 1-29, July.
    5. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    6. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    8. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    9. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    10. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
    11. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
    12. Guoqing Huang & Yao Chen & Ke Li & Jiangke Luo & Sai Zhang & Mingming Lv, 2024. "A Two-Step Grid–Coordinate Optimization Method for a Wind Farm with a Regular Layout Using a Genetic Algorithm," Energies, MDPI, vol. 17(13), pages 1-22, July.
    13. Cao, Jiu Fa & Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Sun, Zhen Ye, 2020. "Optimizing wind energy conversion efficiency with respect to noise: A study on multi-criteria wind farm layout design," Renewable Energy, Elsevier, vol. 159(C), pages 468-485.
    14. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    15. Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Leonardo P. Chamorro & Ali Khanjari, 2023. "A Simple Model for Wake-Induced Aerodynamic Interaction of Wind Turbines," Energies, MDPI, vol. 16(15), pages 1-13, July.
    16. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    17. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    18. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    19. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    20. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:220-:d:1561188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.