IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp64-70.html
   My bibliography  Save this article

A fast and effective local search algorithm for optimizing the placement of wind turbines

Author

Listed:
  • Wagner, Markus
  • Day, Jareth
  • Neumann, Frank

Abstract

The placement of wind turbines on a given area of land such that the wind farm produces a maximum amount of energy is a challenging optimization problem. In this article, we tackle this problem, taking into account wake effects that are produced by the different turbines on the wind farm. We significantly improve upon existing results for the minimization of wake effects by developing a new problem-specific local search algorithm. One key step in the speed-up of our algorithm is the reduction in computation time needed to assess a given wind farm layout compared to previous approaches. Our new method allows the optimization of large real-world scenarios within a single night on a standard computer, whereas weeks on specialized computing servers were required for previous approaches.

Suggested Citation

  • Wagner, Markus & Day, Jareth & Neumann, Frank, 2013. "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 64-70.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:64-70
    DOI: 10.1016/j.renene.2012.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    3. Baheri, Ali & Ramaprabhu, Praveen & Vermillion, Christopher, 2018. "Iterative 3D layout optimization and parametric trade study for a reconfigurable ocean current turbine array using Bayesian Optimization," Renewable Energy, Elsevier, vol. 127(C), pages 1052-1063.
    4. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    5. Bansal, Jagdish Chand & Farswan, Pushpa, 2017. "Wind farm layout using biogeography based optimization," Renewable Energy, Elsevier, vol. 107(C), pages 386-402.
    6. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    7. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    8. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    9. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    10. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    11. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    12. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    13. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2013. "Wind farm layout optimization using particle filtering approach," Renewable Energy, Elsevier, vol. 58(C), pages 95-107.
    14. Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
    15. Tingey, Eric B. & Ning, Andrew, 2017. "Trading off sound pressure level and average power production for wind farm layout optimization," Renewable Energy, Elsevier, vol. 114(PB), pages 547-555.
    16. Zergane, Saïd & Smaili, Arezki & Masson, Christian, 2018. "Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method," Renewable Energy, Elsevier, vol. 125(C), pages 166-171.
    17. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    18. Martina Fischetti & Michele Monaci, 2016. "Proximity search heuristics for wind farm optimal layout," Journal of Heuristics, Springer, vol. 22(4), pages 459-474, August.
    19. Nak Joon Choi & Sang Hyun Nam & Jong Hyun Jeong & Kyung Chun Kim, 2014. "CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm," Energies, MDPI, vol. 7(11), pages 1-16, November.
    20. Song, Zhe & Zhang, Zijun & Chen, Xingying, 2016. "The decision model of 3-dimensional wind farm layout design," Renewable Energy, Elsevier, vol. 85(C), pages 248-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:64-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.