IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p217-d1561164.html
   My bibliography  Save this article

A Hybrid Dual-Axis Solar Tracking System: Combining Light-Sensing and Time-Based GPS for Optimal Energy Efficiency

Author

Listed:
  • Muhammad Hammas

    (Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Hassen Fituri

    (Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Ali Shour

    (Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Ashraf Ali Khan

    (Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Usman Ali Khan

    (School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea)

  • Shehab Ahmed

    (CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

Abstract

Fixed solar panels face significant energy loss as they cannot consistently capture optimal sunlight. Because of that, the overall efficiency of the PV panel will be reduced, and the installation requires larger land space to generate appropriate power; this stems from the use of a dual-axis solar tracking system, which can significantly increase overall energy production. The system is based on the combination of two approaches to precisely track the sunlight: first, using multiple LDRs (light-dependent resistors) as photo sensors to track the position of the sun by balancing the resistivity using a proportional integral deprival (PID) controller, and the second approach using the time-based control for cloudy days when sunlight is diffused, getting the time GPS coordinates and time to calculate the accurate position of the sun by determining the azimuth and altitude angle. This dual system significantly improves energy production by 33.23% compared to fixed systems and eliminates errors during shaded conditions while reducing unnecessary energy use from continuous GPS activation. The prototype uses two linear actuators for both angles and a 100-watt solar panel mounted on the dual-axis platform.

Suggested Citation

  • Muhammad Hammas & Hassen Fituri & Ali Shour & Ashraf Ali Khan & Usman Ali Khan & Shehab Ahmed, 2025. "A Hybrid Dual-Axis Solar Tracking System: Combining Light-Sensing and Time-Based GPS for Optimal Energy Efficiency," Energies, MDPI, vol. 18(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:217-:d:1561164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    2. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    3. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    2. Alsharif, Mohammed H. & Nordin, Rosdiadee & Ismail, Mahamod, 2016. "Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia," Renewable Energy, Elsevier, vol. 85(C), pages 157-170.
    3. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    4. Tsimafei Kazlou & Aleh Cherp & Jessica Jewell, 2024. "Feasible deployment of carbon capture and storage and the requirements of climate targets," Nature Climate Change, Nature, vol. 14(10), pages 1047-1055, October.
    5. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    6. Ana Tereza Andrade Borba & Leonardo Jaime Machado Simões & Thamiles Rodrigues de Melo & Alex Álisson Bandeira Santos, 2024. "Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia," Energies, MDPI, vol. 17(3), pages 1-18, January.
    7. Bello, S. & Reiner, 2024. "Experience Curves for Electrolysis Technologies," Cambridge Working Papers in Economics 2476, Faculty of Economics, University of Cambridge.
    8. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    9. Maradin Dario & Cerović Ljerka & Mjeda Trina, 2017. "Economic Effects of Renewable Energy Technologies," Naše gospodarstvo/Our economy, Sciendo, vol. 63(2), pages 49-59, June.
    10. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    12. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    13. Ivan Hajdukovic, 2022. "The impact of international trade on the price of solar photovoltaic modules: empirical evidence," EconomiA, Emerald Group Publishing Limited, vol. 23(1), pages 88-104, July.
    14. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    15. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    16. Carol Dahl & Ben Gilbert & Ian Lange, 2019. "Prospects for Mining Asteroids: Into this World or Out of the Question," Working Papers 2019-03, Colorado School of Mines, Division of Economics and Business, revised Jan 2021.
    17. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    18. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    19. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    20. Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry_v1, Center for Open Science.

    More about this item

    Keywords

    dualaxis; GPS; IoT; latitude; LDR; PV; PID;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:217-:d:1561164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.